summaryrefslogtreecommitdiff
path: root/node_modules/@types/node/crypto.d.ts
diff options
context:
space:
mode:
Diffstat (limited to 'node_modules/@types/node/crypto.d.ts')
-rwxr-xr-xnode_modules/@types/node/crypto.d.ts3973
1 files changed, 3973 insertions, 0 deletions
diff --git a/node_modules/@types/node/crypto.d.ts b/node_modules/@types/node/crypto.d.ts
new file mode 100755
index 0000000..155b975
--- /dev/null
+++ b/node_modules/@types/node/crypto.d.ts
@@ -0,0 +1,3973 @@
+/**
+ * The `crypto` module provides cryptographic functionality that includes a set of
+ * wrappers for OpenSSL's hash, HMAC, cipher, decipher, sign, and verify functions.
+ *
+ * ```js
+ * const { createHmac } = await import('crypto');
+ *
+ * const secret = 'abcdefg';
+ * const hash = createHmac('sha256', secret)
+ * .update('I love cupcakes')
+ * .digest('hex');
+ * console.log(hash);
+ * // Prints:
+ * // c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e
+ * ```
+ * @see [source](https://github.com/nodejs/node/blob/v18.0.0/lib/crypto.js)
+ */
+declare module 'crypto' {
+ import * as stream from 'node:stream';
+ import { PeerCertificate } from 'node:tls';
+ /**
+ * SPKAC is a Certificate Signing Request mechanism originally implemented by
+ * Netscape and was specified formally as part of [HTML5's `keygen` element](https://developer.mozilla.org/en-US/docs/Web/HTML/Element/keygen).
+ *
+ * `<keygen>` is deprecated since [HTML 5.2](https://www.w3.org/TR/html52/changes.html#features-removed) and new projects
+ * should not use this element anymore.
+ *
+ * The `crypto` module provides the `Certificate` class for working with SPKAC
+ * data. The most common usage is handling output generated by the HTML5`<keygen>` element. Node.js uses [OpenSSL's SPKAC
+ * implementation](https://www.openssl.org/docs/man1.1.0/apps/openssl-spkac.html) internally.
+ * @since v0.11.8
+ */
+ class Certificate {
+ /**
+ * ```js
+ * const { Certificate } = await import('crypto');
+ * const spkac = getSpkacSomehow();
+ * const challenge = Certificate.exportChallenge(spkac);
+ * console.log(challenge.toString('utf8'));
+ * // Prints: the challenge as a UTF8 string
+ * ```
+ * @since v9.0.0
+ * @param encoding The `encoding` of the `spkac` string.
+ * @return The challenge component of the `spkac` data structure, which includes a public key and a challenge.
+ */
+ static exportChallenge(spkac: BinaryLike): Buffer;
+ /**
+ * ```js
+ * const { Certificate } = await import('crypto');
+ * const spkac = getSpkacSomehow();
+ * const publicKey = Certificate.exportPublicKey(spkac);
+ * console.log(publicKey);
+ * // Prints: the public key as <Buffer ...>
+ * ```
+ * @since v9.0.0
+ * @param encoding The `encoding` of the `spkac` string.
+ * @return The public key component of the `spkac` data structure, which includes a public key and a challenge.
+ */
+ static exportPublicKey(spkac: BinaryLike, encoding?: string): Buffer;
+ /**
+ * ```js
+ * import { Buffer } from 'buffer';
+ * const { Certificate } = await import('crypto');
+ *
+ * const spkac = getSpkacSomehow();
+ * console.log(Certificate.verifySpkac(Buffer.from(spkac)));
+ * // Prints: true or false
+ * ```
+ * @since v9.0.0
+ * @param encoding The `encoding` of the `spkac` string.
+ * @return `true` if the given `spkac` data structure is valid, `false` otherwise.
+ */
+ static verifySpkac(spkac: NodeJS.ArrayBufferView): boolean;
+ /**
+ * @deprecated
+ * @param spkac
+ * @returns The challenge component of the `spkac` data structure,
+ * which includes a public key and a challenge.
+ */
+ exportChallenge(spkac: BinaryLike): Buffer;
+ /**
+ * @deprecated
+ * @param spkac
+ * @param encoding The encoding of the spkac string.
+ * @returns The public key component of the `spkac` data structure,
+ * which includes a public key and a challenge.
+ */
+ exportPublicKey(spkac: BinaryLike, encoding?: string): Buffer;
+ /**
+ * @deprecated
+ * @param spkac
+ * @returns `true` if the given `spkac` data structure is valid,
+ * `false` otherwise.
+ */
+ verifySpkac(spkac: NodeJS.ArrayBufferView): boolean;
+ }
+ namespace constants {
+ // https://nodejs.org/dist/latest-v10.x/docs/api/crypto.html#crypto_crypto_constants
+ const OPENSSL_VERSION_NUMBER: number;
+ /** Applies multiple bug workarounds within OpenSSL. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html for detail. */
+ const SSL_OP_ALL: number;
+ /** Allows legacy insecure renegotiation between OpenSSL and unpatched clients or servers. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html. */
+ const SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION: number;
+ /** Attempts to use the server's preferences instead of the client's when selecting a cipher. See https://www.openssl.org/docs/man1.0.2/ssl/SSL_CTX_set_options.html. */
+ const SSL_OP_CIPHER_SERVER_PREFERENCE: number;
+ /** Instructs OpenSSL to use Cisco's "speshul" version of DTLS_BAD_VER. */
+ const SSL_OP_CISCO_ANYCONNECT: number;
+ /** Instructs OpenSSL to turn on cookie exchange. */
+ const SSL_OP_COOKIE_EXCHANGE: number;
+ /** Instructs OpenSSL to add server-hello extension from an early version of the cryptopro draft. */
+ const SSL_OP_CRYPTOPRO_TLSEXT_BUG: number;
+ /** Instructs OpenSSL to disable a SSL 3.0/TLS 1.0 vulnerability workaround added in OpenSSL 0.9.6d. */
+ const SSL_OP_DONT_INSERT_EMPTY_FRAGMENTS: number;
+ /** Instructs OpenSSL to always use the tmp_rsa key when performing RSA operations. */
+ const SSL_OP_EPHEMERAL_RSA: number;
+ /** Allows initial connection to servers that do not support RI. */
+ const SSL_OP_LEGACY_SERVER_CONNECT: number;
+ const SSL_OP_MICROSOFT_BIG_SSLV3_BUFFER: number;
+ const SSL_OP_MICROSOFT_SESS_ID_BUG: number;
+ /** Instructs OpenSSL to disable the workaround for a man-in-the-middle protocol-version vulnerability in the SSL 2.0 server implementation. */
+ const SSL_OP_MSIE_SSLV2_RSA_PADDING: number;
+ const SSL_OP_NETSCAPE_CA_DN_BUG: number;
+ const SSL_OP_NETSCAPE_CHALLENGE_BUG: number;
+ const SSL_OP_NETSCAPE_DEMO_CIPHER_CHANGE_BUG: number;
+ const SSL_OP_NETSCAPE_REUSE_CIPHER_CHANGE_BUG: number;
+ /** Instructs OpenSSL to disable support for SSL/TLS compression. */
+ const SSL_OP_NO_COMPRESSION: number;
+ const SSL_OP_NO_QUERY_MTU: number;
+ /** Instructs OpenSSL to always start a new session when performing renegotiation. */
+ const SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION: number;
+ const SSL_OP_NO_SSLv2: number;
+ const SSL_OP_NO_SSLv3: number;
+ const SSL_OP_NO_TICKET: number;
+ const SSL_OP_NO_TLSv1: number;
+ const SSL_OP_NO_TLSv1_1: number;
+ const SSL_OP_NO_TLSv1_2: number;
+ const SSL_OP_PKCS1_CHECK_1: number;
+ const SSL_OP_PKCS1_CHECK_2: number;
+ /** Instructs OpenSSL to always create a new key when using temporary/ephemeral DH parameters. */
+ const SSL_OP_SINGLE_DH_USE: number;
+ /** Instructs OpenSSL to always create a new key when using temporary/ephemeral ECDH parameters. */
+ const SSL_OP_SINGLE_ECDH_USE: number;
+ const SSL_OP_SSLEAY_080_CLIENT_DH_BUG: number;
+ const SSL_OP_SSLREF2_REUSE_CERT_TYPE_BUG: number;
+ const SSL_OP_TLS_BLOCK_PADDING_BUG: number;
+ const SSL_OP_TLS_D5_BUG: number;
+ /** Instructs OpenSSL to disable version rollback attack detection. */
+ const SSL_OP_TLS_ROLLBACK_BUG: number;
+ const ENGINE_METHOD_RSA: number;
+ const ENGINE_METHOD_DSA: number;
+ const ENGINE_METHOD_DH: number;
+ const ENGINE_METHOD_RAND: number;
+ const ENGINE_METHOD_EC: number;
+ const ENGINE_METHOD_CIPHERS: number;
+ const ENGINE_METHOD_DIGESTS: number;
+ const ENGINE_METHOD_PKEY_METHS: number;
+ const ENGINE_METHOD_PKEY_ASN1_METHS: number;
+ const ENGINE_METHOD_ALL: number;
+ const ENGINE_METHOD_NONE: number;
+ const DH_CHECK_P_NOT_SAFE_PRIME: number;
+ const DH_CHECK_P_NOT_PRIME: number;
+ const DH_UNABLE_TO_CHECK_GENERATOR: number;
+ const DH_NOT_SUITABLE_GENERATOR: number;
+ const ALPN_ENABLED: number;
+ const RSA_PKCS1_PADDING: number;
+ const RSA_SSLV23_PADDING: number;
+ const RSA_NO_PADDING: number;
+ const RSA_PKCS1_OAEP_PADDING: number;
+ const RSA_X931_PADDING: number;
+ const RSA_PKCS1_PSS_PADDING: number;
+ /** Sets the salt length for RSA_PKCS1_PSS_PADDING to the digest size when signing or verifying. */
+ const RSA_PSS_SALTLEN_DIGEST: number;
+ /** Sets the salt length for RSA_PKCS1_PSS_PADDING to the maximum permissible value when signing data. */
+ const RSA_PSS_SALTLEN_MAX_SIGN: number;
+ /** Causes the salt length for RSA_PKCS1_PSS_PADDING to be determined automatically when verifying a signature. */
+ const RSA_PSS_SALTLEN_AUTO: number;
+ const POINT_CONVERSION_COMPRESSED: number;
+ const POINT_CONVERSION_UNCOMPRESSED: number;
+ const POINT_CONVERSION_HYBRID: number;
+ /** Specifies the built-in default cipher list used by Node.js (colon-separated values). */
+ const defaultCoreCipherList: string;
+ /** Specifies the active default cipher list used by the current Node.js process (colon-separated values). */
+ const defaultCipherList: string;
+ }
+ interface HashOptions extends stream.TransformOptions {
+ /**
+ * For XOF hash functions such as `shake256`, the
+ * outputLength option can be used to specify the desired output length in bytes.
+ */
+ outputLength?: number | undefined;
+ }
+ /** @deprecated since v10.0.0 */
+ const fips: boolean;
+ /**
+ * Creates and returns a `Hash` object that can be used to generate hash digests
+ * using the given `algorithm`. Optional `options` argument controls stream
+ * behavior. For XOF hash functions such as `'shake256'`, the `outputLength` option
+ * can be used to specify the desired output length in bytes.
+ *
+ * The `algorithm` is dependent on the available algorithms supported by the
+ * version of OpenSSL on the platform. Examples are `'sha256'`, `'sha512'`, etc.
+ * On recent releases of OpenSSL, `openssl list -digest-algorithms` will
+ * display the available digest algorithms.
+ *
+ * Example: generating the sha256 sum of a file
+ *
+ * ```js
+ * import {
+ * createReadStream
+ * } from 'fs';
+ * import { argv } from 'process';
+ * const {
+ * createHash
+ * } = await import('crypto');
+ *
+ * const filename = argv[2];
+ *
+ * const hash = createHash('sha256');
+ *
+ * const input = createReadStream(filename);
+ * input.on('readable', () => {
+ * // Only one element is going to be produced by the
+ * // hash stream.
+ * const data = input.read();
+ * if (data)
+ * hash.update(data);
+ * else {
+ * console.log(`${hash.digest('hex')} ${filename}`);
+ * }
+ * });
+ * ```
+ * @since v0.1.92
+ * @param options `stream.transform` options
+ */
+ function createHash(algorithm: string, options?: HashOptions): Hash;
+ /**
+ * Creates and returns an `Hmac` object that uses the given `algorithm` and `key`.
+ * Optional `options` argument controls stream behavior.
+ *
+ * The `algorithm` is dependent on the available algorithms supported by the
+ * version of OpenSSL on the platform. Examples are `'sha256'`, `'sha512'`, etc.
+ * On recent releases of OpenSSL, `openssl list -digest-algorithms` will
+ * display the available digest algorithms.
+ *
+ * The `key` is the HMAC key used to generate the cryptographic HMAC hash. If it is
+ * a `KeyObject`, its type must be `secret`.
+ *
+ * Example: generating the sha256 HMAC of a file
+ *
+ * ```js
+ * import {
+ * createReadStream
+ * } from 'fs';
+ * import { argv } from 'process';
+ * const {
+ * createHmac
+ * } = await import('crypto');
+ *
+ * const filename = argv[2];
+ *
+ * const hmac = createHmac('sha256', 'a secret');
+ *
+ * const input = createReadStream(filename);
+ * input.on('readable', () => {
+ * // Only one element is going to be produced by the
+ * // hash stream.
+ * const data = input.read();
+ * if (data)
+ * hmac.update(data);
+ * else {
+ * console.log(`${hmac.digest('hex')} ${filename}`);
+ * }
+ * });
+ * ```
+ * @since v0.1.94
+ * @param options `stream.transform` options
+ */
+ function createHmac(algorithm: string, key: BinaryLike | KeyObject, options?: stream.TransformOptions): Hmac;
+ // https://nodejs.org/api/buffer.html#buffer_buffers_and_character_encodings
+ type BinaryToTextEncoding = 'base64' | 'base64url' | 'hex' | 'binary';
+ type CharacterEncoding = 'utf8' | 'utf-8' | 'utf16le' | 'latin1';
+ type LegacyCharacterEncoding = 'ascii' | 'binary' | 'ucs2' | 'ucs-2';
+ type Encoding = BinaryToTextEncoding | CharacterEncoding | LegacyCharacterEncoding;
+ type ECDHKeyFormat = 'compressed' | 'uncompressed' | 'hybrid';
+ /**
+ * The `Hash` class is a utility for creating hash digests of data. It can be
+ * used in one of two ways:
+ *
+ * * As a `stream` that is both readable and writable, where data is written
+ * to produce a computed hash digest on the readable side, or
+ * * Using the `hash.update()` and `hash.digest()` methods to produce the
+ * computed hash.
+ *
+ * The {@link createHash} method is used to create `Hash` instances. `Hash`objects are not to be created directly using the `new` keyword.
+ *
+ * Example: Using `Hash` objects as streams:
+ *
+ * ```js
+ * const {
+ * createHash
+ * } = await import('crypto');
+ *
+ * const hash = createHash('sha256');
+ *
+ * hash.on('readable', () => {
+ * // Only one element is going to be produced by the
+ * // hash stream.
+ * const data = hash.read();
+ * if (data) {
+ * console.log(data.toString('hex'));
+ * // Prints:
+ * // 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
+ * }
+ * });
+ *
+ * hash.write('some data to hash');
+ * hash.end();
+ * ```
+ *
+ * Example: Using `Hash` and piped streams:
+ *
+ * ```js
+ * import { createReadStream } from 'fs';
+ * import { stdout } from 'process';
+ * const { createHash } = await import('crypto');
+ *
+ * const hash = createHash('sha256');
+ *
+ * const input = createReadStream('test.js');
+ * input.pipe(hash).setEncoding('hex').pipe(stdout);
+ * ```
+ *
+ * Example: Using the `hash.update()` and `hash.digest()` methods:
+ *
+ * ```js
+ * const {
+ * createHash
+ * } = await import('crypto');
+ *
+ * const hash = createHash('sha256');
+ *
+ * hash.update('some data to hash');
+ * console.log(hash.digest('hex'));
+ * // Prints:
+ * // 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
+ * ```
+ * @since v0.1.92
+ */
+ class Hash extends stream.Transform {
+ private constructor();
+ /**
+ * Creates a new `Hash` object that contains a deep copy of the internal state
+ * of the current `Hash` object.
+ *
+ * The optional `options` argument controls stream behavior. For XOF hash
+ * functions such as `'shake256'`, the `outputLength` option can be used to
+ * specify the desired output length in bytes.
+ *
+ * An error is thrown when an attempt is made to copy the `Hash` object after
+ * its `hash.digest()` method has been called.
+ *
+ * ```js
+ * // Calculate a rolling hash.
+ * const {
+ * createHash
+ * } = await import('crypto');
+ *
+ * const hash = createHash('sha256');
+ *
+ * hash.update('one');
+ * console.log(hash.copy().digest('hex'));
+ *
+ * hash.update('two');
+ * console.log(hash.copy().digest('hex'));
+ *
+ * hash.update('three');
+ * console.log(hash.copy().digest('hex'));
+ *
+ * // Etc.
+ * ```
+ * @since v13.1.0
+ * @param options `stream.transform` options
+ */
+ copy(options?: stream.TransformOptions): Hash;
+ /**
+ * Updates the hash content with the given `data`, the encoding of which
+ * is given in `inputEncoding`.
+ * If `encoding` is not provided, and the `data` is a string, an
+ * encoding of `'utf8'` is enforced. If `data` is a `Buffer`, `TypedArray`, or`DataView`, then `inputEncoding` is ignored.
+ *
+ * This can be called many times with new data as it is streamed.
+ * @since v0.1.92
+ * @param inputEncoding The `encoding` of the `data` string.
+ */
+ update(data: BinaryLike): Hash;
+ update(data: string, inputEncoding: Encoding): Hash;
+ /**
+ * Calculates the digest of all of the data passed to be hashed (using the `hash.update()` method).
+ * If `encoding` is provided a string will be returned; otherwise
+ * a `Buffer` is returned.
+ *
+ * The `Hash` object can not be used again after `hash.digest()` method has been
+ * called. Multiple calls will cause an error to be thrown.
+ * @since v0.1.92
+ * @param encoding The `encoding` of the return value.
+ */
+ digest(): Buffer;
+ digest(encoding: BinaryToTextEncoding): string;
+ }
+ /**
+ * The `Hmac` class is a utility for creating cryptographic HMAC digests. It can
+ * be used in one of two ways:
+ *
+ * * As a `stream` that is both readable and writable, where data is written
+ * to produce a computed HMAC digest on the readable side, or
+ * * Using the `hmac.update()` and `hmac.digest()` methods to produce the
+ * computed HMAC digest.
+ *
+ * The {@link createHmac} method is used to create `Hmac` instances. `Hmac`objects are not to be created directly using the `new` keyword.
+ *
+ * Example: Using `Hmac` objects as streams:
+ *
+ * ```js
+ * const {
+ * createHmac
+ * } = await import('crypto');
+ *
+ * const hmac = createHmac('sha256', 'a secret');
+ *
+ * hmac.on('readable', () => {
+ * // Only one element is going to be produced by the
+ * // hash stream.
+ * const data = hmac.read();
+ * if (data) {
+ * console.log(data.toString('hex'));
+ * // Prints:
+ * // 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
+ * }
+ * });
+ *
+ * hmac.write('some data to hash');
+ * hmac.end();
+ * ```
+ *
+ * Example: Using `Hmac` and piped streams:
+ *
+ * ```js
+ * import { createReadStream } from 'fs';
+ * import { stdout } from 'process';
+ * const {
+ * createHmac
+ * } = await import('crypto');
+ *
+ * const hmac = createHmac('sha256', 'a secret');
+ *
+ * const input = createReadStream('test.js');
+ * input.pipe(hmac).pipe(stdout);
+ * ```
+ *
+ * Example: Using the `hmac.update()` and `hmac.digest()` methods:
+ *
+ * ```js
+ * const {
+ * createHmac
+ * } = await import('crypto');
+ *
+ * const hmac = createHmac('sha256', 'a secret');
+ *
+ * hmac.update('some data to hash');
+ * console.log(hmac.digest('hex'));
+ * // Prints:
+ * // 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
+ * ```
+ * @since v0.1.94
+ */
+ class Hmac extends stream.Transform {
+ private constructor();
+ /**
+ * Updates the `Hmac` content with the given `data`, the encoding of which
+ * is given in `inputEncoding`.
+ * If `encoding` is not provided, and the `data` is a string, an
+ * encoding of `'utf8'` is enforced. If `data` is a `Buffer`, `TypedArray`, or`DataView`, then `inputEncoding` is ignored.
+ *
+ * This can be called many times with new data as it is streamed.
+ * @since v0.1.94
+ * @param inputEncoding The `encoding` of the `data` string.
+ */
+ update(data: BinaryLike): Hmac;
+ update(data: string, inputEncoding: Encoding): Hmac;
+ /**
+ * Calculates the HMAC digest of all of the data passed using `hmac.update()`.
+ * If `encoding` is
+ * provided a string is returned; otherwise a `Buffer` is returned;
+ *
+ * The `Hmac` object can not be used again after `hmac.digest()` has been
+ * called. Multiple calls to `hmac.digest()` will result in an error being thrown.
+ * @since v0.1.94
+ * @param encoding The `encoding` of the return value.
+ */
+ digest(): Buffer;
+ digest(encoding: BinaryToTextEncoding): string;
+ }
+ type KeyObjectType = 'secret' | 'public' | 'private';
+ interface KeyExportOptions<T extends KeyFormat> {
+ type: 'pkcs1' | 'spki' | 'pkcs8' | 'sec1';
+ format: T;
+ cipher?: string | undefined;
+ passphrase?: string | Buffer | undefined;
+ }
+ interface JwkKeyExportOptions {
+ format: 'jwk';
+ }
+ interface JsonWebKey {
+ crv?: string | undefined;
+ d?: string | undefined;
+ dp?: string | undefined;
+ dq?: string | undefined;
+ e?: string | undefined;
+ k?: string | undefined;
+ kty?: string | undefined;
+ n?: string | undefined;
+ p?: string | undefined;
+ q?: string | undefined;
+ qi?: string | undefined;
+ x?: string | undefined;
+ y?: string | undefined;
+ [key: string]: unknown;
+ }
+ interface AsymmetricKeyDetails {
+ /**
+ * Key size in bits (RSA, DSA).
+ */
+ modulusLength?: number | undefined;
+ /**
+ * Public exponent (RSA).
+ */
+ publicExponent?: bigint | undefined;
+ /**
+ * Name of the message digest (RSA-PSS).
+ */
+ hashAlgorithm?: string | undefined;
+ /**
+ * Name of the message digest used by MGF1 (RSA-PSS).
+ */
+ mgf1HashAlgorithm?: string | undefined;
+ /**
+ * Minimal salt length in bytes (RSA-PSS).
+ */
+ saltLength?: number | undefined;
+ /**
+ * Size of q in bits (DSA).
+ */
+ divisorLength?: number | undefined;
+ /**
+ * Name of the curve (EC).
+ */
+ namedCurve?: string | undefined;
+ }
+ /**
+ * Node.js uses a `KeyObject` class to represent a symmetric or asymmetric key,
+ * and each kind of key exposes different functions. The {@link createSecretKey}, {@link createPublicKey} and {@link createPrivateKey} methods are used to create `KeyObject`instances. `KeyObject`
+ * objects are not to be created directly using the `new`keyword.
+ *
+ * Most applications should consider using the new `KeyObject` API instead of
+ * passing keys as strings or `Buffer`s due to improved security features.
+ *
+ * `KeyObject` instances can be passed to other threads via `postMessage()`.
+ * The receiver obtains a cloned `KeyObject`, and the `KeyObject` does not need to
+ * be listed in the `transferList` argument.
+ * @since v11.6.0
+ */
+ class KeyObject {
+ private constructor();
+ /**
+ * Example: Converting a `CryptoKey` instance to a `KeyObject`:
+ *
+ * ```js
+ * const { webcrypto, KeyObject } = await import('crypto');
+ * const { subtle } = webcrypto;
+ *
+ * const key = await subtle.generateKey({
+ * name: 'HMAC',
+ * hash: 'SHA-256',
+ * length: 256
+ * }, true, ['sign', 'verify']);
+ *
+ * const keyObject = KeyObject.from(key);
+ * console.log(keyObject.symmetricKeySize);
+ * // Prints: 32 (symmetric key size in bytes)
+ * ```
+ * @since v15.0.0
+ */
+ static from(key: webcrypto.CryptoKey): KeyObject;
+ /**
+ * For asymmetric keys, this property represents the type of the key. Supported key
+ * types are:
+ *
+ * * `'rsa'` (OID 1.2.840.113549.1.1.1)
+ * * `'rsa-pss'` (OID 1.2.840.113549.1.1.10)
+ * * `'dsa'` (OID 1.2.840.10040.4.1)
+ * * `'ec'` (OID 1.2.840.10045.2.1)
+ * * `'x25519'` (OID 1.3.101.110)
+ * * `'x448'` (OID 1.3.101.111)
+ * * `'ed25519'` (OID 1.3.101.112)
+ * * `'ed448'` (OID 1.3.101.113)
+ * * `'dh'` (OID 1.2.840.113549.1.3.1)
+ *
+ * This property is `undefined` for unrecognized `KeyObject` types and symmetric
+ * keys.
+ * @since v11.6.0
+ */
+ asymmetricKeyType?: KeyType | undefined;
+ /**
+ * For asymmetric keys, this property represents the size of the embedded key in
+ * bytes. This property is `undefined` for symmetric keys.
+ */
+ asymmetricKeySize?: number | undefined;
+ /**
+ * This property exists only on asymmetric keys. Depending on the type of the key,
+ * this object contains information about the key. None of the information obtained
+ * through this property can be used to uniquely identify a key or to compromise
+ * the security of the key.
+ *
+ * For RSA-PSS keys, if the key material contains a `RSASSA-PSS-params` sequence,
+ * the `hashAlgorithm`, `mgf1HashAlgorithm`, and `saltLength` properties will be
+ * set.
+ *
+ * Other key details might be exposed via this API using additional attributes.
+ * @since v15.7.0
+ */
+ asymmetricKeyDetails?: AsymmetricKeyDetails | undefined;
+ /**
+ * For symmetric keys, the following encoding options can be used:
+ *
+ * For public keys, the following encoding options can be used:
+ *
+ * For private keys, the following encoding options can be used:
+ *
+ * The result type depends on the selected encoding format, when PEM the
+ * result is a string, when DER it will be a buffer containing the data
+ * encoded as DER, when [JWK](https://tools.ietf.org/html/rfc7517) it will be an object.
+ *
+ * When [JWK](https://tools.ietf.org/html/rfc7517) encoding format was selected, all other encoding options are
+ * ignored.
+ *
+ * PKCS#1, SEC1, and PKCS#8 type keys can be encrypted by using a combination of
+ * the `cipher` and `format` options. The PKCS#8 `type` can be used with any`format` to encrypt any key algorithm (RSA, EC, or DH) by specifying a`cipher`. PKCS#1 and SEC1 can only be
+ * encrypted by specifying a `cipher`when the PEM `format` is used. For maximum compatibility, use PKCS#8 for
+ * encrypted private keys. Since PKCS#8 defines its own
+ * encryption mechanism, PEM-level encryption is not supported when encrypting
+ * a PKCS#8 key. See [RFC 5208](https://www.rfc-editor.org/rfc/rfc5208.txt) for PKCS#8 encryption and [RFC 1421](https://www.rfc-editor.org/rfc/rfc1421.txt) for
+ * PKCS#1 and SEC1 encryption.
+ * @since v11.6.0
+ */
+ export(options: KeyExportOptions<'pem'>): string | Buffer;
+ export(options?: KeyExportOptions<'der'>): Buffer;
+ export(options?: JwkKeyExportOptions): JsonWebKey;
+ /**
+ * For secret keys, this property represents the size of the key in bytes. This
+ * property is `undefined` for asymmetric keys.
+ * @since v11.6.0
+ */
+ symmetricKeySize?: number | undefined;
+ /**
+ * Depending on the type of this `KeyObject`, this property is either`'secret'` for secret (symmetric) keys, `'public'` for public (asymmetric) keys
+ * or `'private'` for private (asymmetric) keys.
+ * @since v11.6.0
+ */
+ type: KeyObjectType;
+ }
+ type CipherCCMTypes = 'aes-128-ccm' | 'aes-192-ccm' | 'aes-256-ccm' | 'chacha20-poly1305';
+ type CipherGCMTypes = 'aes-128-gcm' | 'aes-192-gcm' | 'aes-256-gcm';
+ type CipherOCBTypes = 'aes-128-ocb' | 'aes-192-ocb' | 'aes-256-ocb';
+ type BinaryLike = string | NodeJS.ArrayBufferView;
+ type CipherKey = BinaryLike | KeyObject;
+ interface CipherCCMOptions extends stream.TransformOptions {
+ authTagLength: number;
+ }
+ interface CipherGCMOptions extends stream.TransformOptions {
+ authTagLength?: number | undefined;
+ }
+ interface CipherOCBOptions extends stream.TransformOptions {
+ authTagLength: number;
+ }
+ /**
+ * Creates and returns a `Cipher` object that uses the given `algorithm` and`password`.
+ *
+ * The `options` argument controls stream behavior and is optional except when a
+ * cipher in CCM or OCB mode (e.g. `'aes-128-ccm'`) is used. In that case, the`authTagLength` option is required and specifies the length of the
+ * authentication tag in bytes, see `CCM mode`. In GCM mode, the `authTagLength`option is not required but can be used to set the length of the authentication
+ * tag that will be returned by `getAuthTag()` and defaults to 16 bytes.
+ * For `chacha20-poly1305`, the `authTagLength` option defaults to 16 bytes.
+ *
+ * The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On
+ * recent OpenSSL releases, `openssl list -cipher-algorithms` will
+ * display the available cipher algorithms.
+ *
+ * The `password` is used to derive the cipher key and initialization vector (IV).
+ * The value must be either a `'latin1'` encoded string, a `Buffer`, a`TypedArray`, or a `DataView`.
+ *
+ * The implementation of `crypto.createCipher()` derives keys using the OpenSSL
+ * function [`EVP_BytesToKey`](https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html) with the digest algorithm set to MD5, one
+ * iteration, and no salt. The lack of salt allows dictionary attacks as the same
+ * password always creates the same key. The low iteration count and
+ * non-cryptographically secure hash algorithm allow passwords to be tested very
+ * rapidly.
+ *
+ * In line with OpenSSL's recommendation to use a more modern algorithm instead of [`EVP_BytesToKey`](https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html) it is recommended that
+ * developers derive a key and IV on
+ * their own using {@link scrypt} and to use {@link createCipheriv} to create the `Cipher` object. Users should not use ciphers with counter mode
+ * (e.g. CTR, GCM, or CCM) in `crypto.createCipher()`. A warning is emitted when
+ * they are used in order to avoid the risk of IV reuse that causes
+ * vulnerabilities. For the case when IV is reused in GCM, see [Nonce-Disrespecting Adversaries](https://github.com/nonce-disrespect/nonce-disrespect) for details.
+ * @since v0.1.94
+ * @deprecated Since v10.0.0 - Use {@link createCipheriv} instead.
+ * @param options `stream.transform` options
+ */
+ function createCipher(algorithm: CipherCCMTypes, password: BinaryLike, options: CipherCCMOptions): CipherCCM;
+ /** @deprecated since v10.0.0 use `createCipheriv()` */
+ function createCipher(algorithm: CipherGCMTypes, password: BinaryLike, options?: CipherGCMOptions): CipherGCM;
+ /** @deprecated since v10.0.0 use `createCipheriv()` */
+ function createCipher(algorithm: string, password: BinaryLike, options?: stream.TransformOptions): Cipher;
+ /**
+ * Creates and returns a `Cipher` object, with the given `algorithm`, `key` and
+ * initialization vector (`iv`).
+ *
+ * The `options` argument controls stream behavior and is optional except when a
+ * cipher in CCM or OCB mode (e.g. `'aes-128-ccm'`) is used. In that case, the`authTagLength` option is required and specifies the length of the
+ * authentication tag in bytes, see `CCM mode`. In GCM mode, the `authTagLength`option is not required but can be used to set the length of the authentication
+ * tag that will be returned by `getAuthTag()` and defaults to 16 bytes.
+ * For `chacha20-poly1305`, the `authTagLength` option defaults to 16 bytes.
+ *
+ * The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On
+ * recent OpenSSL releases, `openssl list -cipher-algorithms` will
+ * display the available cipher algorithms.
+ *
+ * The `key` is the raw key used by the `algorithm` and `iv` is an [initialization vector](https://en.wikipedia.org/wiki/Initialization_vector). Both arguments must be `'utf8'` encoded
+ * strings,`Buffers`, `TypedArray`, or `DataView`s. The `key` may optionally be
+ * a `KeyObject` of type `secret`. If the cipher does not need
+ * an initialization vector, `iv` may be `null`.
+ *
+ * When passing strings for `key` or `iv`, please consider `caveats when using strings as inputs to cryptographic APIs`.
+ *
+ * Initialization vectors should be unpredictable and unique; ideally, they will be
+ * cryptographically random. They do not have to be secret: IVs are typically just
+ * added to ciphertext messages unencrypted. It may sound contradictory that
+ * something has to be unpredictable and unique, but does not have to be secret;
+ * remember that an attacker must not be able to predict ahead of time what a
+ * given IV will be.
+ * @since v0.1.94
+ * @param options `stream.transform` options
+ */
+ function createCipheriv(algorithm: CipherCCMTypes, key: CipherKey, iv: BinaryLike, options: CipherCCMOptions): CipherCCM;
+ function createCipheriv(algorithm: CipherOCBTypes, key: CipherKey, iv: BinaryLike, options: CipherOCBOptions): CipherOCB;
+ function createCipheriv(algorithm: CipherGCMTypes, key: CipherKey, iv: BinaryLike, options?: CipherGCMOptions): CipherGCM;
+ function createCipheriv(algorithm: string, key: CipherKey, iv: BinaryLike | null, options?: stream.TransformOptions): Cipher;
+ /**
+ * Instances of the `Cipher` class are used to encrypt data. The class can be
+ * used in one of two ways:
+ *
+ * * As a `stream` that is both readable and writable, where plain unencrypted
+ * data is written to produce encrypted data on the readable side, or
+ * * Using the `cipher.update()` and `cipher.final()` methods to produce
+ * the encrypted data.
+ *
+ * The {@link createCipher} or {@link createCipheriv} methods are
+ * used to create `Cipher` instances. `Cipher` objects are not to be created
+ * directly using the `new` keyword.
+ *
+ * Example: Using `Cipher` objects as streams:
+ *
+ * ```js
+ * const {
+ * scrypt,
+ * randomFill,
+ * createCipheriv
+ * } = await import('crypto');
+ *
+ * const algorithm = 'aes-192-cbc';
+ * const password = 'Password used to generate key';
+ *
+ * // First, we'll generate the key. The key length is dependent on the algorithm.
+ * // In this case for aes192, it is 24 bytes (192 bits).
+ * scrypt(password, 'salt', 24, (err, key) => {
+ * if (err) throw err;
+ * // Then, we'll generate a random initialization vector
+ * randomFill(new Uint8Array(16), (err, iv) => {
+ * if (err) throw err;
+ *
+ * // Once we have the key and iv, we can create and use the cipher...
+ * const cipher = createCipheriv(algorithm, key, iv);
+ *
+ * let encrypted = '';
+ * cipher.setEncoding('hex');
+ *
+ * cipher.on('data', (chunk) => encrypted += chunk);
+ * cipher.on('end', () => console.log(encrypted));
+ *
+ * cipher.write('some clear text data');
+ * cipher.end();
+ * });
+ * });
+ * ```
+ *
+ * Example: Using `Cipher` and piped streams:
+ *
+ * ```js
+ * import {
+ * createReadStream,
+ * createWriteStream,
+ * } from 'fs';
+ *
+ * import {
+ * pipeline
+ * } from 'stream';
+ *
+ * const {
+ * scrypt,
+ * randomFill,
+ * createCipheriv
+ * } = await import('crypto');
+ *
+ * const algorithm = 'aes-192-cbc';
+ * const password = 'Password used to generate key';
+ *
+ * // First, we'll generate the key. The key length is dependent on the algorithm.
+ * // In this case for aes192, it is 24 bytes (192 bits).
+ * scrypt(password, 'salt', 24, (err, key) => {
+ * if (err) throw err;
+ * // Then, we'll generate a random initialization vector
+ * randomFill(new Uint8Array(16), (err, iv) => {
+ * if (err) throw err;
+ *
+ * const cipher = createCipheriv(algorithm, key, iv);
+ *
+ * const input = createReadStream('test.js');
+ * const output = createWriteStream('test.enc');
+ *
+ * pipeline(input, cipher, output, (err) => {
+ * if (err) throw err;
+ * });
+ * });
+ * });
+ * ```
+ *
+ * Example: Using the `cipher.update()` and `cipher.final()` methods:
+ *
+ * ```js
+ * const {
+ * scrypt,
+ * randomFill,
+ * createCipheriv
+ * } = await import('crypto');
+ *
+ * const algorithm = 'aes-192-cbc';
+ * const password = 'Password used to generate key';
+ *
+ * // First, we'll generate the key. The key length is dependent on the algorithm.
+ * // In this case for aes192, it is 24 bytes (192 bits).
+ * scrypt(password, 'salt', 24, (err, key) => {
+ * if (err) throw err;
+ * // Then, we'll generate a random initialization vector
+ * randomFill(new Uint8Array(16), (err, iv) => {
+ * if (err) throw err;
+ *
+ * const cipher = createCipheriv(algorithm, key, iv);
+ *
+ * let encrypted = cipher.update('some clear text data', 'utf8', 'hex');
+ * encrypted += cipher.final('hex');
+ * console.log(encrypted);
+ * });
+ * });
+ * ```
+ * @since v0.1.94
+ */
+ class Cipher extends stream.Transform {
+ private constructor();
+ /**
+ * Updates the cipher with `data`. If the `inputEncoding` argument is given,
+ * the `data`argument is a string using the specified encoding. If the `inputEncoding`argument is not given, `data` must be a `Buffer`, `TypedArray`, or`DataView`. If `data` is a `Buffer`,
+ * `TypedArray`, or `DataView`, then`inputEncoding` is ignored.
+ *
+ * The `outputEncoding` specifies the output format of the enciphered
+ * data. If the `outputEncoding`is specified, a string using the specified encoding is returned. If no`outputEncoding` is provided, a `Buffer` is returned.
+ *
+ * The `cipher.update()` method can be called multiple times with new data until `cipher.final()` is called. Calling `cipher.update()` after `cipher.final()` will result in an error being
+ * thrown.
+ * @since v0.1.94
+ * @param inputEncoding The `encoding` of the data.
+ * @param outputEncoding The `encoding` of the return value.
+ */
+ update(data: BinaryLike): Buffer;
+ update(data: string, inputEncoding: Encoding): Buffer;
+ update(data: NodeJS.ArrayBufferView, inputEncoding: undefined, outputEncoding: Encoding): string;
+ update(data: string, inputEncoding: Encoding | undefined, outputEncoding: Encoding): string;
+ /**
+ * Once the `cipher.final()` method has been called, the `Cipher` object can no
+ * longer be used to encrypt data. Attempts to call `cipher.final()` more than
+ * once will result in an error being thrown.
+ * @since v0.1.94
+ * @param outputEncoding The `encoding` of the return value.
+ * @return Any remaining enciphered contents. If `outputEncoding` is specified, a string is returned. If an `outputEncoding` is not provided, a {@link Buffer} is returned.
+ */
+ final(): Buffer;
+ final(outputEncoding: BufferEncoding): string;
+ /**
+ * When using block encryption algorithms, the `Cipher` class will automatically
+ * add padding to the input data to the appropriate block size. To disable the
+ * default padding call `cipher.setAutoPadding(false)`.
+ *
+ * When `autoPadding` is `false`, the length of the entire input data must be a
+ * multiple of the cipher's block size or `cipher.final()` will throw an error.
+ * Disabling automatic padding is useful for non-standard padding, for instance
+ * using `0x0` instead of PKCS padding.
+ *
+ * The `cipher.setAutoPadding()` method must be called before `cipher.final()`.
+ * @since v0.7.1
+ * @param [autoPadding=true]
+ * @return for method chaining.
+ */
+ setAutoPadding(autoPadding?: boolean): this;
+ }
+ interface CipherCCM extends Cipher {
+ setAAD(
+ buffer: NodeJS.ArrayBufferView,
+ options: {
+ plaintextLength: number;
+ }
+ ): this;
+ getAuthTag(): Buffer;
+ }
+ interface CipherGCM extends Cipher {
+ setAAD(
+ buffer: NodeJS.ArrayBufferView,
+ options?: {
+ plaintextLength: number;
+ }
+ ): this;
+ getAuthTag(): Buffer;
+ }
+ interface CipherOCB extends Cipher {
+ setAAD(
+ buffer: NodeJS.ArrayBufferView,
+ options?: {
+ plaintextLength: number;
+ }
+ ): this;
+ getAuthTag(): Buffer;
+ }
+ /**
+ * Creates and returns a `Decipher` object that uses the given `algorithm` and`password` (key).
+ *
+ * The `options` argument controls stream behavior and is optional except when a
+ * cipher in CCM or OCB mode (e.g. `'aes-128-ccm'`) is used. In that case, the`authTagLength` option is required and specifies the length of the
+ * authentication tag in bytes, see `CCM mode`.
+ * For `chacha20-poly1305`, the `authTagLength` option defaults to 16 bytes.
+ *
+ * The implementation of `crypto.createDecipher()` derives keys using the OpenSSL
+ * function [`EVP_BytesToKey`](https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html) with the digest algorithm set to MD5, one
+ * iteration, and no salt. The lack of salt allows dictionary attacks as the same
+ * password always creates the same key. The low iteration count and
+ * non-cryptographically secure hash algorithm allow passwords to be tested very
+ * rapidly.
+ *
+ * In line with OpenSSL's recommendation to use a more modern algorithm instead of [`EVP_BytesToKey`](https://www.openssl.org/docs/man1.1.0/crypto/EVP_BytesToKey.html) it is recommended that
+ * developers derive a key and IV on
+ * their own using {@link scrypt} and to use {@link createDecipheriv} to create the `Decipher` object.
+ * @since v0.1.94
+ * @deprecated Since v10.0.0 - Use {@link createDecipheriv} instead.
+ * @param options `stream.transform` options
+ */
+ function createDecipher(algorithm: CipherCCMTypes, password: BinaryLike, options: CipherCCMOptions): DecipherCCM;
+ /** @deprecated since v10.0.0 use `createDecipheriv()` */
+ function createDecipher(algorithm: CipherGCMTypes, password: BinaryLike, options?: CipherGCMOptions): DecipherGCM;
+ /** @deprecated since v10.0.0 use `createDecipheriv()` */
+ function createDecipher(algorithm: string, password: BinaryLike, options?: stream.TransformOptions): Decipher;
+ /**
+ * Creates and returns a `Decipher` object that uses the given `algorithm`, `key`and initialization vector (`iv`).
+ *
+ * The `options` argument controls stream behavior and is optional except when a
+ * cipher in CCM or OCB mode (e.g. `'aes-128-ccm'`) is used. In that case, the`authTagLength` option is required and specifies the length of the
+ * authentication tag in bytes, see `CCM mode`. In GCM mode, the `authTagLength`option is not required but can be used to restrict accepted authentication tags
+ * to those with the specified length.
+ * For `chacha20-poly1305`, the `authTagLength` option defaults to 16 bytes.
+ *
+ * The `algorithm` is dependent on OpenSSL, examples are `'aes192'`, etc. On
+ * recent OpenSSL releases, `openssl list -cipher-algorithms` will
+ * display the available cipher algorithms.
+ *
+ * The `key` is the raw key used by the `algorithm` and `iv` is an [initialization vector](https://en.wikipedia.org/wiki/Initialization_vector). Both arguments must be `'utf8'` encoded
+ * strings,`Buffers`, `TypedArray`, or `DataView`s. The `key` may optionally be
+ * a `KeyObject` of type `secret`. If the cipher does not need
+ * an initialization vector, `iv` may be `null`.
+ *
+ * When passing strings for `key` or `iv`, please consider `caveats when using strings as inputs to cryptographic APIs`.
+ *
+ * Initialization vectors should be unpredictable and unique; ideally, they will be
+ * cryptographically random. They do not have to be secret: IVs are typically just
+ * added to ciphertext messages unencrypted. It may sound contradictory that
+ * something has to be unpredictable and unique, but does not have to be secret;
+ * remember that an attacker must not be able to predict ahead of time what a given
+ * IV will be.
+ * @since v0.1.94
+ * @param options `stream.transform` options
+ */
+ function createDecipheriv(algorithm: CipherCCMTypes, key: CipherKey, iv: BinaryLike, options: CipherCCMOptions): DecipherCCM;
+ function createDecipheriv(algorithm: CipherOCBTypes, key: CipherKey, iv: BinaryLike, options: CipherOCBOptions): DecipherOCB;
+ function createDecipheriv(algorithm: CipherGCMTypes, key: CipherKey, iv: BinaryLike, options?: CipherGCMOptions): DecipherGCM;
+ function createDecipheriv(algorithm: string, key: CipherKey, iv: BinaryLike | null, options?: stream.TransformOptions): Decipher;
+ /**
+ * Instances of the `Decipher` class are used to decrypt data. The class can be
+ * used in one of two ways:
+ *
+ * * As a `stream` that is both readable and writable, where plain encrypted
+ * data is written to produce unencrypted data on the readable side, or
+ * * Using the `decipher.update()` and `decipher.final()` methods to
+ * produce the unencrypted data.
+ *
+ * The {@link createDecipher} or {@link createDecipheriv} methods are
+ * used to create `Decipher` instances. `Decipher` objects are not to be created
+ * directly using the `new` keyword.
+ *
+ * Example: Using `Decipher` objects as streams:
+ *
+ * ```js
+ * import { Buffer } from 'buffer';
+ * const {
+ * scryptSync,
+ * createDecipheriv
+ * } = await import('crypto');
+ *
+ * const algorithm = 'aes-192-cbc';
+ * const password = 'Password used to generate key';
+ * // Key length is dependent on the algorithm. In this case for aes192, it is
+ * // 24 bytes (192 bits).
+ * // Use the async `crypto.scrypt()` instead.
+ * const key = scryptSync(password, 'salt', 24);
+ * // The IV is usually passed along with the ciphertext.
+ * const iv = Buffer.alloc(16, 0); // Initialization vector.
+ *
+ * const decipher = createDecipheriv(algorithm, key, iv);
+ *
+ * let decrypted = '';
+ * decipher.on('readable', () => {
+ * while (null !== (chunk = decipher.read())) {
+ * decrypted += chunk.toString('utf8');
+ * }
+ * });
+ * decipher.on('end', () => {
+ * console.log(decrypted);
+ * // Prints: some clear text data
+ * });
+ *
+ * // Encrypted with same algorithm, key and iv.
+ * const encrypted =
+ * 'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
+ * decipher.write(encrypted, 'hex');
+ * decipher.end();
+ * ```
+ *
+ * Example: Using `Decipher` and piped streams:
+ *
+ * ```js
+ * import {
+ * createReadStream,
+ * createWriteStream,
+ * } from 'fs';
+ * import { Buffer } from 'buffer';
+ * const {
+ * scryptSync,
+ * createDecipheriv
+ * } = await import('crypto');
+ *
+ * const algorithm = 'aes-192-cbc';
+ * const password = 'Password used to generate key';
+ * // Use the async `crypto.scrypt()` instead.
+ * const key = scryptSync(password, 'salt', 24);
+ * // The IV is usually passed along with the ciphertext.
+ * const iv = Buffer.alloc(16, 0); // Initialization vector.
+ *
+ * const decipher = createDecipheriv(algorithm, key, iv);
+ *
+ * const input = createReadStream('test.enc');
+ * const output = createWriteStream('test.js');
+ *
+ * input.pipe(decipher).pipe(output);
+ * ```
+ *
+ * Example: Using the `decipher.update()` and `decipher.final()` methods:
+ *
+ * ```js
+ * import { Buffer } from 'buffer';
+ * const {
+ * scryptSync,
+ * createDecipheriv
+ * } = await import('crypto');
+ *
+ * const algorithm = 'aes-192-cbc';
+ * const password = 'Password used to generate key';
+ * // Use the async `crypto.scrypt()` instead.
+ * const key = scryptSync(password, 'salt', 24);
+ * // The IV is usually passed along with the ciphertext.
+ * const iv = Buffer.alloc(16, 0); // Initialization vector.
+ *
+ * const decipher = createDecipheriv(algorithm, key, iv);
+ *
+ * // Encrypted using same algorithm, key and iv.
+ * const encrypted =
+ * 'e5f79c5915c02171eec6b212d5520d44480993d7d622a7c4c2da32f6efda0ffa';
+ * let decrypted = decipher.update(encrypted, 'hex', 'utf8');
+ * decrypted += decipher.final('utf8');
+ * console.log(decrypted);
+ * // Prints: some clear text data
+ * ```
+ * @since v0.1.94
+ */
+ class Decipher extends stream.Transform {
+ private constructor();
+ /**
+ * Updates the decipher with `data`. If the `inputEncoding` argument is given,
+ * the `data`argument is a string using the specified encoding. If the `inputEncoding`argument is not given, `data` must be a `Buffer`. If `data` is a `Buffer` then `inputEncoding` is
+ * ignored.
+ *
+ * The `outputEncoding` specifies the output format of the enciphered
+ * data. If the `outputEncoding`is specified, a string using the specified encoding is returned. If no`outputEncoding` is provided, a `Buffer` is returned.
+ *
+ * The `decipher.update()` method can be called multiple times with new data until `decipher.final()` is called. Calling `decipher.update()` after `decipher.final()` will result in an error
+ * being thrown.
+ * @since v0.1.94
+ * @param inputEncoding The `encoding` of the `data` string.
+ * @param outputEncoding The `encoding` of the return value.
+ */
+ update(data: NodeJS.ArrayBufferView): Buffer;
+ update(data: string, inputEncoding: Encoding): Buffer;
+ update(data: NodeJS.ArrayBufferView, inputEncoding: undefined, outputEncoding: Encoding): string;
+ update(data: string, inputEncoding: Encoding | undefined, outputEncoding: Encoding): string;
+ /**
+ * Once the `decipher.final()` method has been called, the `Decipher` object can
+ * no longer be used to decrypt data. Attempts to call `decipher.final()` more
+ * than once will result in an error being thrown.
+ * @since v0.1.94
+ * @param outputEncoding The `encoding` of the return value.
+ * @return Any remaining deciphered contents. If `outputEncoding` is specified, a string is returned. If an `outputEncoding` is not provided, a {@link Buffer} is returned.
+ */
+ final(): Buffer;
+ final(outputEncoding: BufferEncoding): string;
+ /**
+ * When data has been encrypted without standard block padding, calling`decipher.setAutoPadding(false)` will disable automatic padding to prevent `decipher.final()` from checking for and
+ * removing padding.
+ *
+ * Turning auto padding off will only work if the input data's length is a
+ * multiple of the ciphers block size.
+ *
+ * The `decipher.setAutoPadding()` method must be called before `decipher.final()`.
+ * @since v0.7.1
+ * @param [autoPadding=true]
+ * @return for method chaining.
+ */
+ setAutoPadding(auto_padding?: boolean): this;
+ }
+ interface DecipherCCM extends Decipher {
+ setAuthTag(buffer: NodeJS.ArrayBufferView): this;
+ setAAD(
+ buffer: NodeJS.ArrayBufferView,
+ options: {
+ plaintextLength: number;
+ }
+ ): this;
+ }
+ interface DecipherGCM extends Decipher {
+ setAuthTag(buffer: NodeJS.ArrayBufferView): this;
+ setAAD(
+ buffer: NodeJS.ArrayBufferView,
+ options?: {
+ plaintextLength: number;
+ }
+ ): this;
+ }
+ interface DecipherOCB extends Decipher {
+ setAuthTag(buffer: NodeJS.ArrayBufferView): this;
+ setAAD(
+ buffer: NodeJS.ArrayBufferView,
+ options?: {
+ plaintextLength: number;
+ }
+ ): this;
+ }
+ interface PrivateKeyInput {
+ key: string | Buffer;
+ format?: KeyFormat | undefined;
+ type?: 'pkcs1' | 'pkcs8' | 'sec1' | undefined;
+ passphrase?: string | Buffer | undefined;
+ encoding?: string | undefined;
+ }
+ interface PublicKeyInput {
+ key: string | Buffer;
+ format?: KeyFormat | undefined;
+ type?: 'pkcs1' | 'spki' | undefined;
+ encoding?: string | undefined;
+ }
+ /**
+ * Asynchronously generates a new random secret key of the given `length`. The`type` will determine which validations will be performed on the `length`.
+ *
+ * ```js
+ * const {
+ * generateKey
+ * } = await import('crypto');
+ *
+ * generateKey('hmac', { length: 64 }, (err, key) => {
+ * if (err) throw err;
+ * console.log(key.export().toString('hex')); // 46e..........620
+ * });
+ * ```
+ * @since v15.0.0
+ * @param type The intended use of the generated secret key. Currently accepted values are `'hmac'` and `'aes'`.
+ */
+ function generateKey(
+ type: 'hmac' | 'aes',
+ options: {
+ length: number;
+ },
+ callback: (err: Error | null, key: KeyObject) => void
+ ): void;
+ /**
+ * Synchronously generates a new random secret key of the given `length`. The`type` will determine which validations will be performed on the `length`.
+ *
+ * ```js
+ * const {
+ * generateKeySync
+ * } = await import('crypto');
+ *
+ * const key = generateKeySync('hmac', { length: 64 });
+ * console.log(key.export().toString('hex')); // e89..........41e
+ * ```
+ * @since v15.0.0
+ * @param type The intended use of the generated secret key. Currently accepted values are `'hmac'` and `'aes'`.
+ */
+ function generateKeySync(
+ type: 'hmac' | 'aes',
+ options: {
+ length: number;
+ }
+ ): KeyObject;
+ interface JsonWebKeyInput {
+ key: JsonWebKey;
+ format: 'jwk';
+ }
+ /**
+ * Creates and returns a new key object containing a private key. If `key` is a
+ * string or `Buffer`, `format` is assumed to be `'pem'`; otherwise, `key`must be an object with the properties described above.
+ *
+ * If the private key is encrypted, a `passphrase` must be specified. The length
+ * of the passphrase is limited to 1024 bytes.
+ * @since v11.6.0
+ */
+ function createPrivateKey(key: PrivateKeyInput | string | Buffer | JsonWebKeyInput): KeyObject;
+ /**
+ * Creates and returns a new key object containing a public key. If `key` is a
+ * string or `Buffer`, `format` is assumed to be `'pem'`; if `key` is a `KeyObject`with type `'private'`, the public key is derived from the given private key;
+ * otherwise, `key` must be an object with the properties described above.
+ *
+ * If the format is `'pem'`, the `'key'` may also be an X.509 certificate.
+ *
+ * Because public keys can be derived from private keys, a private key may be
+ * passed instead of a public key. In that case, this function behaves as if {@link createPrivateKey} had been called, except that the type of the
+ * returned `KeyObject` will be `'public'` and that the private key cannot be
+ * extracted from the returned `KeyObject`. Similarly, if a `KeyObject` with type`'private'` is given, a new `KeyObject` with type `'public'` will be returned
+ * and it will be impossible to extract the private key from the returned object.
+ * @since v11.6.0
+ */
+ function createPublicKey(key: PublicKeyInput | string | Buffer | KeyObject | JsonWebKeyInput): KeyObject;
+ /**
+ * Creates and returns a new key object containing a secret key for symmetric
+ * encryption or `Hmac`.
+ * @since v11.6.0
+ * @param encoding The string encoding when `key` is a string.
+ */
+ function createSecretKey(key: NodeJS.ArrayBufferView): KeyObject;
+ function createSecretKey(key: string, encoding: BufferEncoding): KeyObject;
+ /**
+ * Creates and returns a `Sign` object that uses the given `algorithm`. Use {@link getHashes} to obtain the names of the available digest algorithms.
+ * Optional `options` argument controls the `stream.Writable` behavior.
+ *
+ * In some cases, a `Sign` instance can be created using the name of a signature
+ * algorithm, such as `'RSA-SHA256'`, instead of a digest algorithm. This will use
+ * the corresponding digest algorithm. This does not work for all signature
+ * algorithms, such as `'ecdsa-with-SHA256'`, so it is best to always use digest
+ * algorithm names.
+ * @since v0.1.92
+ * @param options `stream.Writable` options
+ */
+ function createSign(algorithm: string, options?: stream.WritableOptions): Sign;
+ type DSAEncoding = 'der' | 'ieee-p1363';
+ interface SigningOptions {
+ /**
+ * @see crypto.constants.RSA_PKCS1_PADDING
+ */
+ padding?: number | undefined;
+ saltLength?: number | undefined;
+ dsaEncoding?: DSAEncoding | undefined;
+ }
+ interface SignPrivateKeyInput extends PrivateKeyInput, SigningOptions {}
+ interface SignKeyObjectInput extends SigningOptions {
+ key: KeyObject;
+ }
+ interface VerifyPublicKeyInput extends PublicKeyInput, SigningOptions {}
+ interface VerifyKeyObjectInput extends SigningOptions {
+ key: KeyObject;
+ }
+ interface VerifyJsonWebKeyInput extends JsonWebKeyInput, SigningOptions {}
+ type KeyLike = string | Buffer | KeyObject;
+ /**
+ * The `Sign` class is a utility for generating signatures. It can be used in one
+ * of two ways:
+ *
+ * * As a writable `stream`, where data to be signed is written and the `sign.sign()` method is used to generate and return the signature, or
+ * * Using the `sign.update()` and `sign.sign()` methods to produce the
+ * signature.
+ *
+ * The {@link createSign} method is used to create `Sign` instances. The
+ * argument is the string name of the hash function to use. `Sign` objects are not
+ * to be created directly using the `new` keyword.
+ *
+ * Example: Using `Sign` and `Verify` objects as streams:
+ *
+ * ```js
+ * const {
+ * generateKeyPairSync,
+ * createSign,
+ * createVerify
+ * } = await import('crypto');
+ *
+ * const { privateKey, publicKey } = generateKeyPairSync('ec', {
+ * namedCurve: 'sect239k1'
+ * });
+ *
+ * const sign = createSign('SHA256');
+ * sign.write('some data to sign');
+ * sign.end();
+ * const signature = sign.sign(privateKey, 'hex');
+ *
+ * const verify = createVerify('SHA256');
+ * verify.write('some data to sign');
+ * verify.end();
+ * console.log(verify.verify(publicKey, signature, 'hex'));
+ * // Prints: true
+ * ```
+ *
+ * Example: Using the `sign.update()` and `verify.update()` methods:
+ *
+ * ```js
+ * const {
+ * generateKeyPairSync,
+ * createSign,
+ * createVerify
+ * } = await import('crypto');
+ *
+ * const { privateKey, publicKey } = generateKeyPairSync('rsa', {
+ * modulusLength: 2048,
+ * });
+ *
+ * const sign = createSign('SHA256');
+ * sign.update('some data to sign');
+ * sign.end();
+ * const signature = sign.sign(privateKey);
+ *
+ * const verify = createVerify('SHA256');
+ * verify.update('some data to sign');
+ * verify.end();
+ * console.log(verify.verify(publicKey, signature));
+ * // Prints: true
+ * ```
+ * @since v0.1.92
+ */
+ class Sign extends stream.Writable {
+ private constructor();
+ /**
+ * Updates the `Sign` content with the given `data`, the encoding of which
+ * is given in `inputEncoding`.
+ * If `encoding` is not provided, and the `data` is a string, an
+ * encoding of `'utf8'` is enforced. If `data` is a `Buffer`, `TypedArray`, or`DataView`, then `inputEncoding` is ignored.
+ *
+ * This can be called many times with new data as it is streamed.
+ * @since v0.1.92
+ * @param inputEncoding The `encoding` of the `data` string.
+ */
+ update(data: BinaryLike): this;
+ update(data: string, inputEncoding: Encoding): this;
+ /**
+ * Calculates the signature on all the data passed through using either `sign.update()` or `sign.write()`.
+ *
+ * If `privateKey` is not a `KeyObject`, this function behaves as if`privateKey` had been passed to {@link createPrivateKey}. If it is an
+ * object, the following additional properties can be passed:
+ *
+ * If `outputEncoding` is provided a string is returned; otherwise a `Buffer` is returned.
+ *
+ * The `Sign` object can not be again used after `sign.sign()` method has been
+ * called. Multiple calls to `sign.sign()` will result in an error being thrown.
+ * @since v0.1.92
+ */
+ sign(privateKey: KeyLike | SignKeyObjectInput | SignPrivateKeyInput): Buffer;
+ sign(privateKey: KeyLike | SignKeyObjectInput | SignPrivateKeyInput, outputFormat: BinaryToTextEncoding): string;
+ }
+ /**
+ * Creates and returns a `Verify` object that uses the given algorithm.
+ * Use {@link getHashes} to obtain an array of names of the available
+ * signing algorithms. Optional `options` argument controls the`stream.Writable` behavior.
+ *
+ * In some cases, a `Verify` instance can be created using the name of a signature
+ * algorithm, such as `'RSA-SHA256'`, instead of a digest algorithm. This will use
+ * the corresponding digest algorithm. This does not work for all signature
+ * algorithms, such as `'ecdsa-with-SHA256'`, so it is best to always use digest
+ * algorithm names.
+ * @since v0.1.92
+ * @param options `stream.Writable` options
+ */
+ function createVerify(algorithm: string, options?: stream.WritableOptions): Verify;
+ /**
+ * The `Verify` class is a utility for verifying signatures. It can be used in one
+ * of two ways:
+ *
+ * * As a writable `stream` where written data is used to validate against the
+ * supplied signature, or
+ * * Using the `verify.update()` and `verify.verify()` methods to verify
+ * the signature.
+ *
+ * The {@link createVerify} method is used to create `Verify` instances.`Verify` objects are not to be created directly using the `new` keyword.
+ *
+ * See `Sign` for examples.
+ * @since v0.1.92
+ */
+ class Verify extends stream.Writable {
+ private constructor();
+ /**
+ * Updates the `Verify` content with the given `data`, the encoding of which
+ * is given in `inputEncoding`.
+ * If `inputEncoding` is not provided, and the `data` is a string, an
+ * encoding of `'utf8'` is enforced. If `data` is a `Buffer`, `TypedArray`, or`DataView`, then `inputEncoding` is ignored.
+ *
+ * This can be called many times with new data as it is streamed.
+ * @since v0.1.92
+ * @param inputEncoding The `encoding` of the `data` string.
+ */
+ update(data: BinaryLike): Verify;
+ update(data: string, inputEncoding: Encoding): Verify;
+ /**
+ * Verifies the provided data using the given `object` and `signature`.
+ *
+ * If `object` is not a `KeyObject`, this function behaves as if`object` had been passed to {@link createPublicKey}. If it is an
+ * object, the following additional properties can be passed:
+ *
+ * The `signature` argument is the previously calculated signature for the data, in
+ * the `signatureEncoding`.
+ * If a `signatureEncoding` is specified, the `signature` is expected to be a
+ * string; otherwise `signature` is expected to be a `Buffer`,`TypedArray`, or `DataView`.
+ *
+ * The `verify` object can not be used again after `verify.verify()` has been
+ * called. Multiple calls to `verify.verify()` will result in an error being
+ * thrown.
+ *
+ * Because public keys can be derived from private keys, a private key may
+ * be passed instead of a public key.
+ * @since v0.1.92
+ */
+ verify(object: KeyLike | VerifyKeyObjectInput | VerifyPublicKeyInput | VerifyJsonWebKeyInput, signature: NodeJS.ArrayBufferView): boolean;
+ verify(object: KeyLike | VerifyKeyObjectInput | VerifyPublicKeyInput | VerifyJsonWebKeyInput, signature: string, signature_format?: BinaryToTextEncoding): boolean;
+ }
+ /**
+ * Creates a `DiffieHellman` key exchange object using the supplied `prime` and an
+ * optional specific `generator`.
+ *
+ * The `generator` argument can be a number, string, or `Buffer`. If`generator` is not specified, the value `2` is used.
+ *
+ * If `primeEncoding` is specified, `prime` is expected to be a string; otherwise
+ * a `Buffer`, `TypedArray`, or `DataView` is expected.
+ *
+ * If `generatorEncoding` is specified, `generator` is expected to be a string;
+ * otherwise a number, `Buffer`, `TypedArray`, or `DataView` is expected.
+ * @since v0.11.12
+ * @param primeEncoding The `encoding` of the `prime` string.
+ * @param [generator=2]
+ * @param generatorEncoding The `encoding` of the `generator` string.
+ */
+ function createDiffieHellman(primeLength: number, generator?: number): DiffieHellman;
+ function createDiffieHellman(prime: ArrayBuffer | NodeJS.ArrayBufferView, generator?: number | ArrayBuffer | NodeJS.ArrayBufferView): DiffieHellman;
+ function createDiffieHellman(prime: ArrayBuffer | NodeJS.ArrayBufferView, generator: string, generatorEncoding: BinaryToTextEncoding): DiffieHellman;
+ function createDiffieHellman(prime: string, primeEncoding: BinaryToTextEncoding, generator?: number | ArrayBuffer | NodeJS.ArrayBufferView): DiffieHellman;
+ function createDiffieHellman(prime: string, primeEncoding: BinaryToTextEncoding, generator: string, generatorEncoding: BinaryToTextEncoding): DiffieHellman;
+ /**
+ * The `DiffieHellman` class is a utility for creating Diffie-Hellman key
+ * exchanges.
+ *
+ * Instances of the `DiffieHellman` class can be created using the {@link createDiffieHellman} function.
+ *
+ * ```js
+ * import assert from 'assert';
+ *
+ * const {
+ * createDiffieHellman
+ * } = await import('crypto');
+ *
+ * // Generate Alice's keys...
+ * const alice = createDiffieHellman(2048);
+ * const aliceKey = alice.generateKeys();
+ *
+ * // Generate Bob's keys...
+ * const bob = createDiffieHellman(alice.getPrime(), alice.getGenerator());
+ * const bobKey = bob.generateKeys();
+ *
+ * // Exchange and generate the secret...
+ * const aliceSecret = alice.computeSecret(bobKey);
+ * const bobSecret = bob.computeSecret(aliceKey);
+ *
+ * // OK
+ * assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
+ * ```
+ * @since v0.5.0
+ */
+ class DiffieHellman {
+ private constructor();
+ /**
+ * Generates private and public Diffie-Hellman key values, and returns
+ * the public key in the specified `encoding`. This key should be
+ * transferred to the other party.
+ * If `encoding` is provided a string is returned; otherwise a `Buffer` is returned.
+ * @since v0.5.0
+ * @param encoding The `encoding` of the return value.
+ */
+ generateKeys(): Buffer;
+ generateKeys(encoding: BinaryToTextEncoding): string;
+ /**
+ * Computes the shared secret using `otherPublicKey` as the other
+ * party's public key and returns the computed shared secret. The supplied
+ * key is interpreted using the specified `inputEncoding`, and secret is
+ * encoded using specified `outputEncoding`.
+ * If the `inputEncoding` is not
+ * provided, `otherPublicKey` is expected to be a `Buffer`,`TypedArray`, or `DataView`.
+ *
+ * If `outputEncoding` is given a string is returned; otherwise, a `Buffer` is returned.
+ * @since v0.5.0
+ * @param inputEncoding The `encoding` of an `otherPublicKey` string.
+ * @param outputEncoding The `encoding` of the return value.
+ */
+ computeSecret(otherPublicKey: NodeJS.ArrayBufferView, inputEncoding?: null, outputEncoding?: null): Buffer;
+ computeSecret(otherPublicKey: string, inputEncoding: BinaryToTextEncoding, outputEncoding?: null): Buffer;
+ computeSecret(otherPublicKey: NodeJS.ArrayBufferView, inputEncoding: null, outputEncoding: BinaryToTextEncoding): string;
+ computeSecret(otherPublicKey: string, inputEncoding: BinaryToTextEncoding, outputEncoding: BinaryToTextEncoding): string;
+ /**
+ * Returns the Diffie-Hellman prime in the specified `encoding`.
+ * If `encoding` is provided a string is
+ * returned; otherwise a `Buffer` is returned.
+ * @since v0.5.0
+ * @param encoding The `encoding` of the return value.
+ */
+ getPrime(): Buffer;
+ getPrime(encoding: BinaryToTextEncoding): string;
+ /**
+ * Returns the Diffie-Hellman generator in the specified `encoding`.
+ * If `encoding` is provided a string is
+ * returned; otherwise a `Buffer` is returned.
+ * @since v0.5.0
+ * @param encoding The `encoding` of the return value.
+ */
+ getGenerator(): Buffer;
+ getGenerator(encoding: BinaryToTextEncoding): string;
+ /**
+ * Returns the Diffie-Hellman public key in the specified `encoding`.
+ * If `encoding` is provided a
+ * string is returned; otherwise a `Buffer` is returned.
+ * @since v0.5.0
+ * @param encoding The `encoding` of the return value.
+ */
+ getPublicKey(): Buffer;
+ getPublicKey(encoding: BinaryToTextEncoding): string;
+ /**
+ * Returns the Diffie-Hellman private key in the specified `encoding`.
+ * If `encoding` is provided a
+ * string is returned; otherwise a `Buffer` is returned.
+ * @since v0.5.0
+ * @param encoding The `encoding` of the return value.
+ */
+ getPrivateKey(): Buffer;
+ getPrivateKey(encoding: BinaryToTextEncoding): string;
+ /**
+ * Sets the Diffie-Hellman public key. If the `encoding` argument is provided,`publicKey` is expected
+ * to be a string. If no `encoding` is provided, `publicKey` is expected
+ * to be a `Buffer`, `TypedArray`, or `DataView`.
+ * @since v0.5.0
+ * @param encoding The `encoding` of the `publicKey` string.
+ */
+ setPublicKey(publicKey: NodeJS.ArrayBufferView): void;
+ setPublicKey(publicKey: string, encoding: BufferEncoding): void;
+ /**
+ * Sets the Diffie-Hellman private key. If the `encoding` argument is provided,`privateKey` is expected
+ * to be a string. If no `encoding` is provided, `privateKey` is expected
+ * to be a `Buffer`, `TypedArray`, or `DataView`.
+ * @since v0.5.0
+ * @param encoding The `encoding` of the `privateKey` string.
+ */
+ setPrivateKey(privateKey: NodeJS.ArrayBufferView): void;
+ setPrivateKey(privateKey: string, encoding: BufferEncoding): void;
+ /**
+ * A bit field containing any warnings and/or errors resulting from a check
+ * performed during initialization of the `DiffieHellman` object.
+ *
+ * The following values are valid for this property (as defined in `constants`module):
+ *
+ * * `DH_CHECK_P_NOT_SAFE_PRIME`
+ * * `DH_CHECK_P_NOT_PRIME`
+ * * `DH_UNABLE_TO_CHECK_GENERATOR`
+ * * `DH_NOT_SUITABLE_GENERATOR`
+ * @since v0.11.12
+ */
+ verifyError: number;
+ }
+ /**
+ * The `DiffieHellmanGroup` class takes a well-known modp group as its argument.
+ * It works the same as `DiffieHellman`, except that it does not allow changing its keys after creation.
+ * In other words, it does not implement `setPublicKey()` or `setPrivateKey()` methods.
+ *
+ * ```js
+ * const { createDiffieHellmanGroup } = await import('node:crypto');
+ * const dh = createDiffieHellmanGroup('modp1');
+ * ```
+ * The name (e.g. `'modp1'`) is taken from [RFC 2412](https://www.rfc-editor.org/rfc/rfc2412.txt) (modp1 and 2) and [RFC 3526](https://www.rfc-editor.org/rfc/rfc3526.txt):
+ * ```bash
+ * $ perl -ne 'print "$1\n" if /"(modp\d+)"/' src/node_crypto_groups.h
+ * modp1 # 768 bits
+ * modp2 # 1024 bits
+ * modp5 # 1536 bits
+ * modp14 # 2048 bits
+ * modp15 # etc.
+ * modp16
+ * modp17
+ * modp18
+ * ```
+ * @since v0.7.5
+ */
+ const DiffieHellmanGroup: DiffieHellmanGroupConstructor;
+ interface DiffieHellmanGroupConstructor {
+ new(name: string): DiffieHellmanGroup;
+ (name: string): DiffieHellmanGroup;
+ readonly prototype: DiffieHellmanGroup;
+ }
+ type DiffieHellmanGroup = Omit<DiffieHellman, 'setPublicKey' | 'setPrivateKey'>;
+ /**
+ * Creates a predefined `DiffieHellmanGroup` key exchange object. The
+ * supported groups are: `'modp1'`, `'modp2'`, `'modp5'` (defined in [RFC 2412](https://www.rfc-editor.org/rfc/rfc2412.txt), but see `Caveats`) and `'modp14'`, `'modp15'`,`'modp16'`, `'modp17'`,
+ * `'modp18'` (defined in [RFC 3526](https://www.rfc-editor.org/rfc/rfc3526.txt)). The
+ * returned object mimics the interface of objects created by {@link createDiffieHellman}, but will not allow changing
+ * the keys (with `diffieHellman.setPublicKey()`, for example). The
+ * advantage of using this method is that the parties do not have to
+ * generate nor exchange a group modulus beforehand, saving both processor
+ * and communication time.
+ *
+ * Example (obtaining a shared secret):
+ *
+ * ```js
+ * const {
+ * getDiffieHellman
+ * } = await import('crypto');
+ * const alice = getDiffieHellman('modp14');
+ * const bob = getDiffieHellman('modp14');
+ *
+ * alice.generateKeys();
+ * bob.generateKeys();
+ *
+ * const aliceSecret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
+ * const bobSecret = bob.computeSecret(alice.getPublicKey(), null, 'hex');
+ *
+ * // aliceSecret and bobSecret should be the same
+ * console.log(aliceSecret === bobSecret);
+ * ```
+ * @since v0.7.5
+ */
+ function getDiffieHellman(groupName: string): DiffieHellmanGroup;
+ /**
+ * An alias for {@link getDiffieHellman}
+ * @since v0.9.3
+ */
+ function createDiffieHellmanGroup(name: string): DiffieHellmanGroup;
+ /**
+ * Provides an asynchronous Password-Based Key Derivation Function 2 (PBKDF2)
+ * implementation. A selected HMAC digest algorithm specified by `digest` is
+ * applied to derive a key of the requested byte length (`keylen`) from the`password`, `salt` and `iterations`.
+ *
+ * The supplied `callback` function is called with two arguments: `err` and`derivedKey`. If an error occurs while deriving the key, `err` will be set;
+ * otherwise `err` will be `null`. By default, the successfully generated`derivedKey` will be passed to the callback as a `Buffer`. An error will be
+ * thrown if any of the input arguments specify invalid values or types.
+ *
+ * If `digest` is `null`, `'sha1'` will be used. This behavior is deprecated,
+ * please specify a `digest` explicitly.
+ *
+ * The `iterations` argument must be a number set as high as possible. The
+ * higher the number of iterations, the more secure the derived key will be,
+ * but will take a longer amount of time to complete.
+ *
+ * The `salt` should be as unique as possible. It is recommended that a salt is
+ * random and at least 16 bytes long. See [NIST SP 800-132](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf) for details.
+ *
+ * When passing strings for `password` or `salt`, please consider `caveats when using strings as inputs to cryptographic APIs`.
+ *
+ * ```js
+ * const {
+ * pbkdf2
+ * } = await import('crypto');
+ *
+ * pbkdf2('secret', 'salt', 100000, 64, 'sha512', (err, derivedKey) => {
+ * if (err) throw err;
+ * console.log(derivedKey.toString('hex')); // '3745e48...08d59ae'
+ * });
+ * ```
+ *
+ * The `crypto.DEFAULT_ENCODING` property can be used to change the way the`derivedKey` is passed to the callback. This property, however, has been
+ * deprecated and use should be avoided.
+ *
+ * ```js
+ * import crypto from 'crypto';
+ * crypto.DEFAULT_ENCODING = 'hex';
+ * crypto.pbkdf2('secret', 'salt', 100000, 512, 'sha512', (err, derivedKey) => {
+ * if (err) throw err;
+ * console.log(derivedKey); // '3745e48...aa39b34'
+ * });
+ * ```
+ *
+ * An array of supported digest functions can be retrieved using {@link getHashes}.
+ *
+ * This API uses libuv's threadpool, which can have surprising and
+ * negative performance implications for some applications; see the `UV_THREADPOOL_SIZE` documentation for more information.
+ * @since v0.5.5
+ */
+ function pbkdf2(password: BinaryLike, salt: BinaryLike, iterations: number, keylen: number, digest: string, callback: (err: Error | null, derivedKey: Buffer) => void): void;
+ /**
+ * Provides a synchronous Password-Based Key Derivation Function 2 (PBKDF2)
+ * implementation. A selected HMAC digest algorithm specified by `digest` is
+ * applied to derive a key of the requested byte length (`keylen`) from the`password`, `salt` and `iterations`.
+ *
+ * If an error occurs an `Error` will be thrown, otherwise the derived key will be
+ * returned as a `Buffer`.
+ *
+ * If `digest` is `null`, `'sha1'` will be used. This behavior is deprecated,
+ * please specify a `digest` explicitly.
+ *
+ * The `iterations` argument must be a number set as high as possible. The
+ * higher the number of iterations, the more secure the derived key will be,
+ * but will take a longer amount of time to complete.
+ *
+ * The `salt` should be as unique as possible. It is recommended that a salt is
+ * random and at least 16 bytes long. See [NIST SP 800-132](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf) for details.
+ *
+ * When passing strings for `password` or `salt`, please consider `caveats when using strings as inputs to cryptographic APIs`.
+ *
+ * ```js
+ * const {
+ * pbkdf2Sync
+ * } = await import('crypto');
+ *
+ * const key = pbkdf2Sync('secret', 'salt', 100000, 64, 'sha512');
+ * console.log(key.toString('hex')); // '3745e48...08d59ae'
+ * ```
+ *
+ * The `crypto.DEFAULT_ENCODING` property may be used to change the way the`derivedKey` is returned. This property, however, is deprecated and use
+ * should be avoided.
+ *
+ * ```js
+ * import crypto from 'crypto';
+ * crypto.DEFAULT_ENCODING = 'hex';
+ * const key = crypto.pbkdf2Sync('secret', 'salt', 100000, 512, 'sha512');
+ * console.log(key); // '3745e48...aa39b34'
+ * ```
+ *
+ * An array of supported digest functions can be retrieved using {@link getHashes}.
+ * @since v0.9.3
+ */
+ function pbkdf2Sync(password: BinaryLike, salt: BinaryLike, iterations: number, keylen: number, digest: string): Buffer;
+ /**
+ * Generates cryptographically strong pseudorandom data. The `size` argument
+ * is a number indicating the number of bytes to generate.
+ *
+ * If a `callback` function is provided, the bytes are generated asynchronously
+ * and the `callback` function is invoked with two arguments: `err` and `buf`.
+ * If an error occurs, `err` will be an `Error` object; otherwise it is `null`. The`buf` argument is a `Buffer` containing the generated bytes.
+ *
+ * ```js
+ * // Asynchronous
+ * const {
+ * randomBytes
+ * } = await import('crypto');
+ *
+ * randomBytes(256, (err, buf) => {
+ * if (err) throw err;
+ * console.log(`${buf.length} bytes of random data: ${buf.toString('hex')}`);
+ * });
+ * ```
+ *
+ * If the `callback` function is not provided, the random bytes are generated
+ * synchronously and returned as a `Buffer`. An error will be thrown if
+ * there is a problem generating the bytes.
+ *
+ * ```js
+ * // Synchronous
+ * const {
+ * randomBytes
+ * } = await import('crypto');
+ *
+ * const buf = randomBytes(256);
+ * console.log(
+ * `${buf.length} bytes of random data: ${buf.toString('hex')}`);
+ * ```
+ *
+ * The `crypto.randomBytes()` method will not complete until there is
+ * sufficient entropy available.
+ * This should normally never take longer than a few milliseconds. The only time
+ * when generating the random bytes may conceivably block for a longer period of
+ * time is right after boot, when the whole system is still low on entropy.
+ *
+ * This API uses libuv's threadpool, which can have surprising and
+ * negative performance implications for some applications; see the `UV_THREADPOOL_SIZE` documentation for more information.
+ *
+ * The asynchronous version of `crypto.randomBytes()` is carried out in a single
+ * threadpool request. To minimize threadpool task length variation, partition
+ * large `randomBytes` requests when doing so as part of fulfilling a client
+ * request.
+ * @since v0.5.8
+ * @param size The number of bytes to generate. The `size` must not be larger than `2**31 - 1`.
+ * @return if the `callback` function is not provided.
+ */
+ function randomBytes(size: number): Buffer;
+ function randomBytes(size: number, callback: (err: Error | null, buf: Buffer) => void): void;
+ function pseudoRandomBytes(size: number): Buffer;
+ function pseudoRandomBytes(size: number, callback: (err: Error | null, buf: Buffer) => void): void;
+ /**
+ * Return a random integer `n` such that `min <= n < max`. This
+ * implementation avoids [modulo bias](https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#Modulo_bias).
+ *
+ * The range (`max - min`) must be less than 2^48. `min` and `max` must
+ * be [safe integers](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/isSafeInteger).
+ *
+ * If the `callback` function is not provided, the random integer is
+ * generated synchronously.
+ *
+ * ```js
+ * // Asynchronous
+ * const {
+ * randomInt
+ * } = await import('crypto');
+ *
+ * randomInt(3, (err, n) => {
+ * if (err) throw err;
+ * console.log(`Random number chosen from (0, 1, 2): ${n}`);
+ * });
+ * ```
+ *
+ * ```js
+ * // Synchronous
+ * const {
+ * randomInt
+ * } = await import('crypto');
+ *
+ * const n = randomInt(3);
+ * console.log(`Random number chosen from (0, 1, 2): ${n}`);
+ * ```
+ *
+ * ```js
+ * // With `min` argument
+ * const {
+ * randomInt
+ * } = await import('crypto');
+ *
+ * const n = randomInt(1, 7);
+ * console.log(`The dice rolled: ${n}`);
+ * ```
+ * @since v14.10.0, v12.19.0
+ * @param [min=0] Start of random range (inclusive).
+ * @param max End of random range (exclusive).
+ * @param callback `function(err, n) {}`.
+ */
+ function randomInt(max: number): number;
+ function randomInt(min: number, max: number): number;
+ function randomInt(max: number, callback: (err: Error | null, value: number) => void): void;
+ function randomInt(min: number, max: number, callback: (err: Error | null, value: number) => void): void;
+ /**
+ * Synchronous version of {@link randomFill}.
+ *
+ * ```js
+ * import { Buffer } from 'buffer';
+ * const { randomFillSync } = await import('crypto');
+ *
+ * const buf = Buffer.alloc(10);
+ * console.log(randomFillSync(buf).toString('hex'));
+ *
+ * randomFillSync(buf, 5);
+ * console.log(buf.toString('hex'));
+ *
+ * // The above is equivalent to the following:
+ * randomFillSync(buf, 5, 5);
+ * console.log(buf.toString('hex'));
+ * ```
+ *
+ * Any `ArrayBuffer`, `TypedArray` or `DataView` instance may be passed as`buffer`.
+ *
+ * ```js
+ * import { Buffer } from 'buffer';
+ * const { randomFillSync } = await import('crypto');
+ *
+ * const a = new Uint32Array(10);
+ * console.log(Buffer.from(randomFillSync(a).buffer,
+ * a.byteOffset, a.byteLength).toString('hex'));
+ *
+ * const b = new DataView(new ArrayBuffer(10));
+ * console.log(Buffer.from(randomFillSync(b).buffer,
+ * b.byteOffset, b.byteLength).toString('hex'));
+ *
+ * const c = new ArrayBuffer(10);
+ * console.log(Buffer.from(randomFillSync(c)).toString('hex'));
+ * ```
+ * @since v7.10.0, v6.13.0
+ * @param buffer Must be supplied. The size of the provided `buffer` must not be larger than `2**31 - 1`.
+ * @param [offset=0]
+ * @param [size=buffer.length - offset]
+ * @return The object passed as `buffer` argument.
+ */
+ function randomFillSync<T extends NodeJS.ArrayBufferView>(buffer: T, offset?: number, size?: number): T;
+ /**
+ * This function is similar to {@link randomBytes} but requires the first
+ * argument to be a `Buffer` that will be filled. It also
+ * requires that a callback is passed in.
+ *
+ * If the `callback` function is not provided, an error will be thrown.
+ *
+ * ```js
+ * import { Buffer } from 'buffer';
+ * const { randomFill } = await import('crypto');
+ *
+ * const buf = Buffer.alloc(10);
+ * randomFill(buf, (err, buf) => {
+ * if (err) throw err;
+ * console.log(buf.toString('hex'));
+ * });
+ *
+ * randomFill(buf, 5, (err, buf) => {
+ * if (err) throw err;
+ * console.log(buf.toString('hex'));
+ * });
+ *
+ * // The above is equivalent to the following:
+ * randomFill(buf, 5, 5, (err, buf) => {
+ * if (err) throw err;
+ * console.log(buf.toString('hex'));
+ * });
+ * ```
+ *
+ * Any `ArrayBuffer`, `TypedArray`, or `DataView` instance may be passed as`buffer`.
+ *
+ * While this includes instances of `Float32Array` and `Float64Array`, this
+ * function should not be used to generate random floating-point numbers. The
+ * result may contain `+Infinity`, `-Infinity`, and `NaN`, and even if the array
+ * contains finite numbers only, they are not drawn from a uniform random
+ * distribution and have no meaningful lower or upper bounds.
+ *
+ * ```js
+ * import { Buffer } from 'buffer';
+ * const { randomFill } = await import('crypto');
+ *
+ * const a = new Uint32Array(10);
+ * randomFill(a, (err, buf) => {
+ * if (err) throw err;
+ * console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength)
+ * .toString('hex'));
+ * });
+ *
+ * const b = new DataView(new ArrayBuffer(10));
+ * randomFill(b, (err, buf) => {
+ * if (err) throw err;
+ * console.log(Buffer.from(buf.buffer, buf.byteOffset, buf.byteLength)
+ * .toString('hex'));
+ * });
+ *
+ * const c = new ArrayBuffer(10);
+ * randomFill(c, (err, buf) => {
+ * if (err) throw err;
+ * console.log(Buffer.from(buf).toString('hex'));
+ * });
+ * ```
+ *
+ * This API uses libuv's threadpool, which can have surprising and
+ * negative performance implications for some applications; see the `UV_THREADPOOL_SIZE` documentation for more information.
+ *
+ * The asynchronous version of `crypto.randomFill()` is carried out in a single
+ * threadpool request. To minimize threadpool task length variation, partition
+ * large `randomFill` requests when doing so as part of fulfilling a client
+ * request.
+ * @since v7.10.0, v6.13.0
+ * @param buffer Must be supplied. The size of the provided `buffer` must not be larger than `2**31 - 1`.
+ * @param [offset=0]
+ * @param [size=buffer.length - offset]
+ * @param callback `function(err, buf) {}`.
+ */
+ function randomFill<T extends NodeJS.ArrayBufferView>(buffer: T, callback: (err: Error | null, buf: T) => void): void;
+ function randomFill<T extends NodeJS.ArrayBufferView>(buffer: T, offset: number, callback: (err: Error | null, buf: T) => void): void;
+ function randomFill<T extends NodeJS.ArrayBufferView>(buffer: T, offset: number, size: number, callback: (err: Error | null, buf: T) => void): void;
+ interface ScryptOptions {
+ cost?: number | undefined;
+ blockSize?: number | undefined;
+ parallelization?: number | undefined;
+ N?: number | undefined;
+ r?: number | undefined;
+ p?: number | undefined;
+ maxmem?: number | undefined;
+ }
+ /**
+ * Provides an asynchronous [scrypt](https://en.wikipedia.org/wiki/Scrypt) implementation. Scrypt is a password-based
+ * key derivation function that is designed to be expensive computationally and
+ * memory-wise in order to make brute-force attacks unrewarding.
+ *
+ * The `salt` should be as unique as possible. It is recommended that a salt is
+ * random and at least 16 bytes long. See [NIST SP 800-132](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf) for details.
+ *
+ * When passing strings for `password` or `salt`, please consider `caveats when using strings as inputs to cryptographic APIs`.
+ *
+ * The `callback` function is called with two arguments: `err` and `derivedKey`.`err` is an exception object when key derivation fails, otherwise `err` is`null`. `derivedKey` is passed to the
+ * callback as a `Buffer`.
+ *
+ * An exception is thrown when any of the input arguments specify invalid values
+ * or types.
+ *
+ * ```js
+ * const {
+ * scrypt
+ * } = await import('crypto');
+ *
+ * // Using the factory defaults.
+ * scrypt('password', 'salt', 64, (err, derivedKey) => {
+ * if (err) throw err;
+ * console.log(derivedKey.toString('hex')); // '3745e48...08d59ae'
+ * });
+ * // Using a custom N parameter. Must be a power of two.
+ * scrypt('password', 'salt', 64, { N: 1024 }, (err, derivedKey) => {
+ * if (err) throw err;
+ * console.log(derivedKey.toString('hex')); // '3745e48...aa39b34'
+ * });
+ * ```
+ * @since v10.5.0
+ */
+ function scrypt(password: BinaryLike, salt: BinaryLike, keylen: number, callback: (err: Error | null, derivedKey: Buffer) => void): void;
+ function scrypt(password: BinaryLike, salt: BinaryLike, keylen: number, options: ScryptOptions, callback: (err: Error | null, derivedKey: Buffer) => void): void;
+ /**
+ * Provides a synchronous [scrypt](https://en.wikipedia.org/wiki/Scrypt) implementation. Scrypt is a password-based
+ * key derivation function that is designed to be expensive computationally and
+ * memory-wise in order to make brute-force attacks unrewarding.
+ *
+ * The `salt` should be as unique as possible. It is recommended that a salt is
+ * random and at least 16 bytes long. See [NIST SP 800-132](https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf) for details.
+ *
+ * When passing strings for `password` or `salt`, please consider `caveats when using strings as inputs to cryptographic APIs`.
+ *
+ * An exception is thrown when key derivation fails, otherwise the derived key is
+ * returned as a `Buffer`.
+ *
+ * An exception is thrown when any of the input arguments specify invalid values
+ * or types.
+ *
+ * ```js
+ * const {
+ * scryptSync
+ * } = await import('crypto');
+ * // Using the factory defaults.
+ *
+ * const key1 = scryptSync('password', 'salt', 64);
+ * console.log(key1.toString('hex')); // '3745e48...08d59ae'
+ * // Using a custom N parameter. Must be a power of two.
+ * const key2 = scryptSync('password', 'salt', 64, { N: 1024 });
+ * console.log(key2.toString('hex')); // '3745e48...aa39b34'
+ * ```
+ * @since v10.5.0
+ */
+ function scryptSync(password: BinaryLike, salt: BinaryLike, keylen: number, options?: ScryptOptions): Buffer;
+ interface RsaPublicKey {
+ key: KeyLike;
+ padding?: number | undefined;
+ }
+ interface RsaPrivateKey {
+ key: KeyLike;
+ passphrase?: string | undefined;
+ /**
+ * @default 'sha1'
+ */
+ oaepHash?: string | undefined;
+ oaepLabel?: NodeJS.TypedArray | undefined;
+ padding?: number | undefined;
+ }
+ /**
+ * Encrypts the content of `buffer` with `key` and returns a new `Buffer` with encrypted content. The returned data can be decrypted using
+ * the corresponding private key, for example using {@link privateDecrypt}.
+ *
+ * If `key` is not a `KeyObject`, this function behaves as if`key` had been passed to {@link createPublicKey}. If it is an
+ * object, the `padding` property can be passed. Otherwise, this function uses`RSA_PKCS1_OAEP_PADDING`.
+ *
+ * Because RSA public keys can be derived from private keys, a private key may
+ * be passed instead of a public key.
+ * @since v0.11.14
+ */
+ function publicEncrypt(key: RsaPublicKey | RsaPrivateKey | KeyLike, buffer: NodeJS.ArrayBufferView): Buffer;
+ /**
+ * Decrypts `buffer` with `key`.`buffer` was previously encrypted using
+ * the corresponding private key, for example using {@link privateEncrypt}.
+ *
+ * If `key` is not a `KeyObject`, this function behaves as if`key` had been passed to {@link createPublicKey}. If it is an
+ * object, the `padding` property can be passed. Otherwise, this function uses`RSA_PKCS1_PADDING`.
+ *
+ * Because RSA public keys can be derived from private keys, a private key may
+ * be passed instead of a public key.
+ * @since v1.1.0
+ */
+ function publicDecrypt(key: RsaPublicKey | RsaPrivateKey | KeyLike, buffer: NodeJS.ArrayBufferView): Buffer;
+ /**
+ * Decrypts `buffer` with `privateKey`. `buffer` was previously encrypted using
+ * the corresponding public key, for example using {@link publicEncrypt}.
+ *
+ * If `privateKey` is not a `KeyObject`, this function behaves as if`privateKey` had been passed to {@link createPrivateKey}. If it is an
+ * object, the `padding` property can be passed. Otherwise, this function uses`RSA_PKCS1_OAEP_PADDING`.
+ * @since v0.11.14
+ */
+ function privateDecrypt(privateKey: RsaPrivateKey | KeyLike, buffer: NodeJS.ArrayBufferView): Buffer;
+ /**
+ * Encrypts `buffer` with `privateKey`. The returned data can be decrypted using
+ * the corresponding public key, for example using {@link publicDecrypt}.
+ *
+ * If `privateKey` is not a `KeyObject`, this function behaves as if`privateKey` had been passed to {@link createPrivateKey}. If it is an
+ * object, the `padding` property can be passed. Otherwise, this function uses`RSA_PKCS1_PADDING`.
+ * @since v1.1.0
+ */
+ function privateEncrypt(privateKey: RsaPrivateKey | KeyLike, buffer: NodeJS.ArrayBufferView): Buffer;
+ /**
+ * ```js
+ * const {
+ * getCiphers
+ * } = await import('crypto');
+ *
+ * console.log(getCiphers()); // ['aes-128-cbc', 'aes-128-ccm', ...]
+ * ```
+ * @since v0.9.3
+ * @return An array with the names of the supported cipher algorithms.
+ */
+ function getCiphers(): string[];
+ /**
+ * ```js
+ * const {
+ * getCurves
+ * } = await import('crypto');
+ *
+ * console.log(getCurves()); // ['Oakley-EC2N-3', 'Oakley-EC2N-4', ...]
+ * ```
+ * @since v2.3.0
+ * @return An array with the names of the supported elliptic curves.
+ */
+ function getCurves(): string[];
+ /**
+ * @since v10.0.0
+ * @return `1` if and only if a FIPS compliant crypto provider is currently in use, `0` otherwise. A future semver-major release may change the return type of this API to a {boolean}.
+ */
+ function getFips(): 1 | 0;
+ /**
+ * Enables the FIPS compliant crypto provider in a FIPS-enabled Node.js build. Throws an error if FIPS mode is not available.
+ * @since v10.0.0
+ * @param bool `true` to enable FIPS mode.
+ */
+ function setFips(bool: boolean): void;
+ /**
+ * ```js
+ * const {
+ * getHashes
+ * } = await import('crypto');
+ *
+ * console.log(getHashes()); // ['DSA', 'DSA-SHA', 'DSA-SHA1', ...]
+ * ```
+ * @since v0.9.3
+ * @return An array of the names of the supported hash algorithms, such as `'RSA-SHA256'`. Hash algorithms are also called "digest" algorithms.
+ */
+ function getHashes(): string[];
+ /**
+ * The `ECDH` class is a utility for creating Elliptic Curve Diffie-Hellman (ECDH)
+ * key exchanges.
+ *
+ * Instances of the `ECDH` class can be created using the {@link createECDH} function.
+ *
+ * ```js
+ * import assert from 'assert';
+ *
+ * const {
+ * createECDH
+ * } = await import('crypto');
+ *
+ * // Generate Alice's keys...
+ * const alice = createECDH('secp521r1');
+ * const aliceKey = alice.generateKeys();
+ *
+ * // Generate Bob's keys...
+ * const bob = createECDH('secp521r1');
+ * const bobKey = bob.generateKeys();
+ *
+ * // Exchange and generate the secret...
+ * const aliceSecret = alice.computeSecret(bobKey);
+ * const bobSecret = bob.computeSecret(aliceKey);
+ *
+ * assert.strictEqual(aliceSecret.toString('hex'), bobSecret.toString('hex'));
+ * // OK
+ * ```
+ * @since v0.11.14
+ */
+ class ECDH {
+ private constructor();
+ /**
+ * Converts the EC Diffie-Hellman public key specified by `key` and `curve` to the
+ * format specified by `format`. The `format` argument specifies point encoding
+ * and can be `'compressed'`, `'uncompressed'` or `'hybrid'`. The supplied key is
+ * interpreted using the specified `inputEncoding`, and the returned key is encoded
+ * using the specified `outputEncoding`.
+ *
+ * Use {@link getCurves} to obtain a list of available curve names.
+ * On recent OpenSSL releases, `openssl ecparam -list_curves` will also display
+ * the name and description of each available elliptic curve.
+ *
+ * If `format` is not specified the point will be returned in `'uncompressed'`format.
+ *
+ * If the `inputEncoding` is not provided, `key` is expected to be a `Buffer`,`TypedArray`, or `DataView`.
+ *
+ * Example (uncompressing a key):
+ *
+ * ```js
+ * const {
+ * createECDH,
+ * ECDH
+ * } = await import('crypto');
+ *
+ * const ecdh = createECDH('secp256k1');
+ * ecdh.generateKeys();
+ *
+ * const compressedKey = ecdh.getPublicKey('hex', 'compressed');
+ *
+ * const uncompressedKey = ECDH.convertKey(compressedKey,
+ * 'secp256k1',
+ * 'hex',
+ * 'hex',
+ * 'uncompressed');
+ *
+ * // The converted key and the uncompressed public key should be the same
+ * console.log(uncompressedKey === ecdh.getPublicKey('hex'));
+ * ```
+ * @since v10.0.0
+ * @param inputEncoding The `encoding` of the `key` string.
+ * @param outputEncoding The `encoding` of the return value.
+ * @param [format='uncompressed']
+ */
+ static convertKey(
+ key: BinaryLike,
+ curve: string,
+ inputEncoding?: BinaryToTextEncoding,
+ outputEncoding?: 'latin1' | 'hex' | 'base64' | 'base64url',
+ format?: 'uncompressed' | 'compressed' | 'hybrid'
+ ): Buffer | string;
+ /**
+ * Generates private and public EC Diffie-Hellman key values, and returns
+ * the public key in the specified `format` and `encoding`. This key should be
+ * transferred to the other party.
+ *
+ * The `format` argument specifies point encoding and can be `'compressed'` or`'uncompressed'`. If `format` is not specified, the point will be returned in`'uncompressed'` format.
+ *
+ * If `encoding` is provided a string is returned; otherwise a `Buffer` is returned.
+ * @since v0.11.14
+ * @param encoding The `encoding` of the return value.
+ * @param [format='uncompressed']
+ */
+ generateKeys(): Buffer;
+ generateKeys(encoding: BinaryToTextEncoding, format?: ECDHKeyFormat): string;
+ /**
+ * Computes the shared secret using `otherPublicKey` as the other
+ * party's public key and returns the computed shared secret. The supplied
+ * key is interpreted using specified `inputEncoding`, and the returned secret
+ * is encoded using the specified `outputEncoding`.
+ * If the `inputEncoding` is not
+ * provided, `otherPublicKey` is expected to be a `Buffer`, `TypedArray`, or`DataView`.
+ *
+ * If `outputEncoding` is given a string will be returned; otherwise a `Buffer` is returned.
+ *
+ * `ecdh.computeSecret` will throw an`ERR_CRYPTO_ECDH_INVALID_PUBLIC_KEY` error when `otherPublicKey`lies outside of the elliptic curve. Since `otherPublicKey` is
+ * usually supplied from a remote user over an insecure network,
+ * be sure to handle this exception accordingly.
+ * @since v0.11.14
+ * @param inputEncoding The `encoding` of the `otherPublicKey` string.
+ * @param outputEncoding The `encoding` of the return value.
+ */
+ computeSecret(otherPublicKey: NodeJS.ArrayBufferView): Buffer;
+ computeSecret(otherPublicKey: string, inputEncoding: BinaryToTextEncoding): Buffer;
+ computeSecret(otherPublicKey: NodeJS.ArrayBufferView, outputEncoding: BinaryToTextEncoding): string;
+ computeSecret(otherPublicKey: string, inputEncoding: BinaryToTextEncoding, outputEncoding: BinaryToTextEncoding): string;
+ /**
+ * If `encoding` is specified, a string is returned; otherwise a `Buffer` is
+ * returned.
+ * @since v0.11.14
+ * @param encoding The `encoding` of the return value.
+ * @return The EC Diffie-Hellman in the specified `encoding`.
+ */
+ getPrivateKey(): Buffer;
+ getPrivateKey(encoding: BinaryToTextEncoding): string;
+ /**
+ * The `format` argument specifies point encoding and can be `'compressed'` or`'uncompressed'`. If `format` is not specified the point will be returned in`'uncompressed'` format.
+ *
+ * If `encoding` is specified, a string is returned; otherwise a `Buffer` is
+ * returned.
+ * @since v0.11.14
+ * @param [encoding] The `encoding` of the return value.
+ * @param [format='uncompressed']
+ * @return The EC Diffie-Hellman public key in the specified `encoding` and `format`.
+ */
+ getPublicKey(encoding?: null, format?: ECDHKeyFormat): Buffer;
+ getPublicKey(encoding: BinaryToTextEncoding, format?: ECDHKeyFormat): string;
+ /**
+ * Sets the EC Diffie-Hellman private key.
+ * If `encoding` is provided, `privateKey` is expected
+ * to be a string; otherwise `privateKey` is expected to be a `Buffer`,`TypedArray`, or `DataView`.
+ *
+ * If `privateKey` is not valid for the curve specified when the `ECDH` object was
+ * created, an error is thrown. Upon setting the private key, the associated
+ * public point (key) is also generated and set in the `ECDH` object.
+ * @since v0.11.14
+ * @param encoding The `encoding` of the `privateKey` string.
+ */
+ setPrivateKey(privateKey: NodeJS.ArrayBufferView): void;
+ setPrivateKey(privateKey: string, encoding: BinaryToTextEncoding): void;
+ }
+ /**
+ * Creates an Elliptic Curve Diffie-Hellman (`ECDH`) key exchange object using a
+ * predefined curve specified by the `curveName` string. Use {@link getCurves} to obtain a list of available curve names. On recent
+ * OpenSSL releases, `openssl ecparam -list_curves` will also display the name
+ * and description of each available elliptic curve.
+ * @since v0.11.14
+ */
+ function createECDH(curveName: string): ECDH;
+ /**
+ * This function is based on a constant-time algorithm.
+ * Returns true if `a` is equal to `b`, without leaking timing information that
+ * would allow an attacker to guess one of the values. This is suitable for
+ * comparing HMAC digests or secret values like authentication cookies or [capability urls](https://www.w3.org/TR/capability-urls/).
+ *
+ * `a` and `b` must both be `Buffer`s, `TypedArray`s, or `DataView`s, and they
+ * must have the same byte length. An error is thrown if `a` and `b` have
+ * different byte lengths.
+ *
+ * If at least one of `a` and `b` is a `TypedArray` with more than one byte per
+ * entry, such as `Uint16Array`, the result will be computed using the platform
+ * byte order.
+ *
+ * Use of `crypto.timingSafeEqual` does not guarantee that the _surrounding_ code
+ * is timing-safe. Care should be taken to ensure that the surrounding code does
+ * not introduce timing vulnerabilities.
+ * @since v6.6.0
+ */
+ function timingSafeEqual(a: NodeJS.ArrayBufferView, b: NodeJS.ArrayBufferView): boolean;
+ /** @deprecated since v10.0.0 */
+ const DEFAULT_ENCODING: BufferEncoding;
+ type KeyType = 'rsa' | 'rsa-pss' | 'dsa' | 'ec' | 'ed25519' | 'ed448' | 'x25519' | 'x448';
+ type KeyFormat = 'pem' | 'der' | 'jwk';
+ interface BasePrivateKeyEncodingOptions<T extends KeyFormat> {
+ format: T;
+ cipher?: string | undefined;
+ passphrase?: string | undefined;
+ }
+ interface KeyPairKeyObjectResult {
+ publicKey: KeyObject;
+ privateKey: KeyObject;
+ }
+ interface ED25519KeyPairKeyObjectOptions {}
+ interface ED448KeyPairKeyObjectOptions {}
+ interface X25519KeyPairKeyObjectOptions {}
+ interface X448KeyPairKeyObjectOptions {}
+ interface ECKeyPairKeyObjectOptions {
+ /**
+ * Name of the curve to use
+ */
+ namedCurve: string;
+ }
+ interface RSAKeyPairKeyObjectOptions {
+ /**
+ * Key size in bits
+ */
+ modulusLength: number;
+ /**
+ * Public exponent
+ * @default 0x10001
+ */
+ publicExponent?: number | undefined;
+ }
+ interface RSAPSSKeyPairKeyObjectOptions {
+ /**
+ * Key size in bits
+ */
+ modulusLength: number;
+ /**
+ * Public exponent
+ * @default 0x10001
+ */
+ publicExponent?: number | undefined;
+ /**
+ * Name of the message digest
+ */
+ hashAlgorithm?: string;
+ /**
+ * Name of the message digest used by MGF1
+ */
+ mgf1HashAlgorithm?: string;
+ /**
+ * Minimal salt length in bytes
+ */
+ saltLength?: string;
+ }
+ interface DSAKeyPairKeyObjectOptions {
+ /**
+ * Key size in bits
+ */
+ modulusLength: number;
+ /**
+ * Size of q in bits
+ */
+ divisorLength: number;
+ }
+ interface RSAKeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
+ /**
+ * Key size in bits
+ */
+ modulusLength: number;
+ /**
+ * Public exponent
+ * @default 0x10001
+ */
+ publicExponent?: number | undefined;
+ publicKeyEncoding: {
+ type: 'pkcs1' | 'spki';
+ format: PubF;
+ };
+ privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
+ type: 'pkcs1' | 'pkcs8';
+ };
+ }
+ interface RSAPSSKeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
+ /**
+ * Key size in bits
+ */
+ modulusLength: number;
+ /**
+ * Public exponent
+ * @default 0x10001
+ */
+ publicExponent?: number | undefined;
+ /**
+ * Name of the message digest
+ */
+ hashAlgorithm?: string;
+ /**
+ * Name of the message digest used by MGF1
+ */
+ mgf1HashAlgorithm?: string;
+ /**
+ * Minimal salt length in bytes
+ */
+ saltLength?: string;
+ publicKeyEncoding: {
+ type: 'spki';
+ format: PubF;
+ };
+ privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
+ type: 'pkcs8';
+ };
+ }
+ interface DSAKeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
+ /**
+ * Key size in bits
+ */
+ modulusLength: number;
+ /**
+ * Size of q in bits
+ */
+ divisorLength: number;
+ publicKeyEncoding: {
+ type: 'spki';
+ format: PubF;
+ };
+ privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
+ type: 'pkcs8';
+ };
+ }
+ interface ECKeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
+ /**
+ * Name of the curve to use.
+ */
+ namedCurve: string;
+ publicKeyEncoding: {
+ type: 'pkcs1' | 'spki';
+ format: PubF;
+ };
+ privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
+ type: 'sec1' | 'pkcs8';
+ };
+ }
+ interface ED25519KeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
+ publicKeyEncoding: {
+ type: 'spki';
+ format: PubF;
+ };
+ privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
+ type: 'pkcs8';
+ };
+ }
+ interface ED448KeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
+ publicKeyEncoding: {
+ type: 'spki';
+ format: PubF;
+ };
+ privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
+ type: 'pkcs8';
+ };
+ }
+ interface X25519KeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
+ publicKeyEncoding: {
+ type: 'spki';
+ format: PubF;
+ };
+ privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
+ type: 'pkcs8';
+ };
+ }
+ interface X448KeyPairOptions<PubF extends KeyFormat, PrivF extends KeyFormat> {
+ publicKeyEncoding: {
+ type: 'spki';
+ format: PubF;
+ };
+ privateKeyEncoding: BasePrivateKeyEncodingOptions<PrivF> & {
+ type: 'pkcs8';
+ };
+ }
+ interface KeyPairSyncResult<T1 extends string | Buffer, T2 extends string | Buffer> {
+ publicKey: T1;
+ privateKey: T2;
+ }
+ /**
+ * Generates a new asymmetric key pair of the given `type`. RSA, RSA-PSS, DSA, EC,
+ * Ed25519, Ed448, X25519, X448, and DH are currently supported.
+ *
+ * If a `publicKeyEncoding` or `privateKeyEncoding` was specified, this function
+ * behaves as if `keyObject.export()` had been called on its result. Otherwise,
+ * the respective part of the key is returned as a `KeyObject`.
+ *
+ * When encoding public keys, it is recommended to use `'spki'`. When encoding
+ * private keys, it is recommended to use `'pkcs8'` with a strong passphrase,
+ * and to keep the passphrase confidential.
+ *
+ * ```js
+ * const {
+ * generateKeyPairSync
+ * } = await import('crypto');
+ *
+ * const {
+ * publicKey,
+ * privateKey,
+ * } = generateKeyPairSync('rsa', {
+ * modulusLength: 4096,
+ * publicKeyEncoding: {
+ * type: 'spki',
+ * format: 'pem'
+ * },
+ * privateKeyEncoding: {
+ * type: 'pkcs8',
+ * format: 'pem',
+ * cipher: 'aes-256-cbc',
+ * passphrase: 'top secret'
+ * }
+ * });
+ * ```
+ *
+ * The return value `{ publicKey, privateKey }` represents the generated key pair.
+ * When PEM encoding was selected, the respective key will be a string, otherwise
+ * it will be a buffer containing the data encoded as DER.
+ * @since v10.12.0
+ * @param type Must be `'rsa'`, `'rsa-pss'`, `'dsa'`, `'ec'`, `'ed25519'`, `'ed448'`, `'x25519'`, `'x448'`, or `'dh'`.
+ */
+ function generateKeyPairSync(type: 'rsa', options: RSAKeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
+ function generateKeyPairSync(type: 'rsa', options: RSAKeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
+ function generateKeyPairSync(type: 'rsa', options: RSAKeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
+ function generateKeyPairSync(type: 'rsa', options: RSAKeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
+ function generateKeyPairSync(type: 'rsa', options: RSAKeyPairKeyObjectOptions): KeyPairKeyObjectResult;
+ function generateKeyPairSync(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
+ function generateKeyPairSync(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
+ function generateKeyPairSync(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
+ function generateKeyPairSync(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
+ function generateKeyPairSync(type: 'rsa-pss', options: RSAPSSKeyPairKeyObjectOptions): KeyPairKeyObjectResult;
+ function generateKeyPairSync(type: 'dsa', options: DSAKeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
+ function generateKeyPairSync(type: 'dsa', options: DSAKeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
+ function generateKeyPairSync(type: 'dsa', options: DSAKeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
+ function generateKeyPairSync(type: 'dsa', options: DSAKeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
+ function generateKeyPairSync(type: 'dsa', options: DSAKeyPairKeyObjectOptions): KeyPairKeyObjectResult;
+ function generateKeyPairSync(type: 'ec', options: ECKeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
+ function generateKeyPairSync(type: 'ec', options: ECKeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
+ function generateKeyPairSync(type: 'ec', options: ECKeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
+ function generateKeyPairSync(type: 'ec', options: ECKeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
+ function generateKeyPairSync(type: 'ec', options: ECKeyPairKeyObjectOptions): KeyPairKeyObjectResult;
+ function generateKeyPairSync(type: 'ed25519', options: ED25519KeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
+ function generateKeyPairSync(type: 'ed25519', options: ED25519KeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
+ function generateKeyPairSync(type: 'ed25519', options: ED25519KeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
+ function generateKeyPairSync(type: 'ed25519', options: ED25519KeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
+ function generateKeyPairSync(type: 'ed25519', options?: ED25519KeyPairKeyObjectOptions): KeyPairKeyObjectResult;
+ function generateKeyPairSync(type: 'ed448', options: ED448KeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
+ function generateKeyPairSync(type: 'ed448', options: ED448KeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
+ function generateKeyPairSync(type: 'ed448', options: ED448KeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
+ function generateKeyPairSync(type: 'ed448', options: ED448KeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
+ function generateKeyPairSync(type: 'ed448', options?: ED448KeyPairKeyObjectOptions): KeyPairKeyObjectResult;
+ function generateKeyPairSync(type: 'x25519', options: X25519KeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
+ function generateKeyPairSync(type: 'x25519', options: X25519KeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
+ function generateKeyPairSync(type: 'x25519', options: X25519KeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
+ function generateKeyPairSync(type: 'x25519', options: X25519KeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
+ function generateKeyPairSync(type: 'x25519', options?: X25519KeyPairKeyObjectOptions): KeyPairKeyObjectResult;
+ function generateKeyPairSync(type: 'x448', options: X448KeyPairOptions<'pem', 'pem'>): KeyPairSyncResult<string, string>;
+ function generateKeyPairSync(type: 'x448', options: X448KeyPairOptions<'pem', 'der'>): KeyPairSyncResult<string, Buffer>;
+ function generateKeyPairSync(type: 'x448', options: X448KeyPairOptions<'der', 'pem'>): KeyPairSyncResult<Buffer, string>;
+ function generateKeyPairSync(type: 'x448', options: X448KeyPairOptions<'der', 'der'>): KeyPairSyncResult<Buffer, Buffer>;
+ function generateKeyPairSync(type: 'x448', options?: X448KeyPairKeyObjectOptions): KeyPairKeyObjectResult;
+ /**
+ * Generates a new asymmetric key pair of the given `type`. RSA, RSA-PSS, DSA, EC,
+ * Ed25519, Ed448, X25519, X448, and DH are currently supported.
+ *
+ * If a `publicKeyEncoding` or `privateKeyEncoding` was specified, this function
+ * behaves as if `keyObject.export()` had been called on its result. Otherwise,
+ * the respective part of the key is returned as a `KeyObject`.
+ *
+ * It is recommended to encode public keys as `'spki'` and private keys as`'pkcs8'` with encryption for long-term storage:
+ *
+ * ```js
+ * const {
+ * generateKeyPair
+ * } = await import('crypto');
+ *
+ * generateKeyPair('rsa', {
+ * modulusLength: 4096,
+ * publicKeyEncoding: {
+ * type: 'spki',
+ * format: 'pem'
+ * },
+ * privateKeyEncoding: {
+ * type: 'pkcs8',
+ * format: 'pem',
+ * cipher: 'aes-256-cbc',
+ * passphrase: 'top secret'
+ * }
+ * }, (err, publicKey, privateKey) => {
+ * // Handle errors and use the generated key pair.
+ * });
+ * ```
+ *
+ * On completion, `callback` will be called with `err` set to `undefined` and`publicKey` / `privateKey` representing the generated key pair.
+ *
+ * If this method is invoked as its `util.promisify()` ed version, it returns
+ * a `Promise` for an `Object` with `publicKey` and `privateKey` properties.
+ * @since v10.12.0
+ * @param type Must be `'rsa'`, `'rsa-pss'`, `'dsa'`, `'ec'`, `'ed25519'`, `'ed448'`, `'x25519'`, `'x448'`, or `'dh'`.
+ */
+ function generateKeyPair(type: 'rsa', options: RSAKeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
+ function generateKeyPair(type: 'rsa', options: RSAKeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
+ function generateKeyPair(type: 'rsa', options: RSAKeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
+ function generateKeyPair(type: 'rsa', options: RSAKeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
+ function generateKeyPair(type: 'rsa', options: RSAKeyPairKeyObjectOptions, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
+ function generateKeyPair(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
+ function generateKeyPair(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
+ function generateKeyPair(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
+ function generateKeyPair(type: 'rsa-pss', options: RSAPSSKeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
+ function generateKeyPair(type: 'rsa-pss', options: RSAPSSKeyPairKeyObjectOptions, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
+ function generateKeyPair(type: 'dsa', options: DSAKeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
+ function generateKeyPair(type: 'dsa', options: DSAKeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
+ function generateKeyPair(type: 'dsa', options: DSAKeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
+ function generateKeyPair(type: 'dsa', options: DSAKeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
+ function generateKeyPair(type: 'dsa', options: DSAKeyPairKeyObjectOptions, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
+ function generateKeyPair(type: 'ec', options: ECKeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
+ function generateKeyPair(type: 'ec', options: ECKeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
+ function generateKeyPair(type: 'ec', options: ECKeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
+ function generateKeyPair(type: 'ec', options: ECKeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
+ function generateKeyPair(type: 'ec', options: ECKeyPairKeyObjectOptions, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
+ function generateKeyPair(type: 'ed25519', options: ED25519KeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
+ function generateKeyPair(type: 'ed25519', options: ED25519KeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
+ function generateKeyPair(type: 'ed25519', options: ED25519KeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
+ function generateKeyPair(type: 'ed25519', options: ED25519KeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
+ function generateKeyPair(type: 'ed25519', options: ED25519KeyPairKeyObjectOptions | undefined, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
+ function generateKeyPair(type: 'ed448', options: ED448KeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
+ function generateKeyPair(type: 'ed448', options: ED448KeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
+ function generateKeyPair(type: 'ed448', options: ED448KeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
+ function generateKeyPair(type: 'ed448', options: ED448KeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
+ function generateKeyPair(type: 'ed448', options: ED448KeyPairKeyObjectOptions | undefined, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
+ function generateKeyPair(type: 'x25519', options: X25519KeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
+ function generateKeyPair(type: 'x25519', options: X25519KeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
+ function generateKeyPair(type: 'x25519', options: X25519KeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
+ function generateKeyPair(type: 'x25519', options: X25519KeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
+ function generateKeyPair(type: 'x25519', options: X25519KeyPairKeyObjectOptions | undefined, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
+ function generateKeyPair(type: 'x448', options: X448KeyPairOptions<'pem', 'pem'>, callback: (err: Error | null, publicKey: string, privateKey: string) => void): void;
+ function generateKeyPair(type: 'x448', options: X448KeyPairOptions<'pem', 'der'>, callback: (err: Error | null, publicKey: string, privateKey: Buffer) => void): void;
+ function generateKeyPair(type: 'x448', options: X448KeyPairOptions<'der', 'pem'>, callback: (err: Error | null, publicKey: Buffer, privateKey: string) => void): void;
+ function generateKeyPair(type: 'x448', options: X448KeyPairOptions<'der', 'der'>, callback: (err: Error | null, publicKey: Buffer, privateKey: Buffer) => void): void;
+ function generateKeyPair(type: 'x448', options: X448KeyPairKeyObjectOptions | undefined, callback: (err: Error | null, publicKey: KeyObject, privateKey: KeyObject) => void): void;
+ namespace generateKeyPair {
+ function __promisify__(
+ type: 'rsa',
+ options: RSAKeyPairOptions<'pem', 'pem'>
+ ): Promise<{
+ publicKey: string;
+ privateKey: string;
+ }>;
+ function __promisify__(
+ type: 'rsa',
+ options: RSAKeyPairOptions<'pem', 'der'>
+ ): Promise<{
+ publicKey: string;
+ privateKey: Buffer;
+ }>;
+ function __promisify__(
+ type: 'rsa',
+ options: RSAKeyPairOptions<'der', 'pem'>
+ ): Promise<{
+ publicKey: Buffer;
+ privateKey: string;
+ }>;
+ function __promisify__(
+ type: 'rsa',
+ options: RSAKeyPairOptions<'der', 'der'>
+ ): Promise<{
+ publicKey: Buffer;
+ privateKey: Buffer;
+ }>;
+ function __promisify__(type: 'rsa', options: RSAKeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
+ function __promisify__(
+ type: 'rsa-pss',
+ options: RSAPSSKeyPairOptions<'pem', 'pem'>
+ ): Promise<{
+ publicKey: string;
+ privateKey: string;
+ }>;
+ function __promisify__(
+ type: 'rsa-pss',
+ options: RSAPSSKeyPairOptions<'pem', 'der'>
+ ): Promise<{
+ publicKey: string;
+ privateKey: Buffer;
+ }>;
+ function __promisify__(
+ type: 'rsa-pss',
+ options: RSAPSSKeyPairOptions<'der', 'pem'>
+ ): Promise<{
+ publicKey: Buffer;
+ privateKey: string;
+ }>;
+ function __promisify__(
+ type: 'rsa-pss',
+ options: RSAPSSKeyPairOptions<'der', 'der'>
+ ): Promise<{
+ publicKey: Buffer;
+ privateKey: Buffer;
+ }>;
+ function __promisify__(type: 'rsa-pss', options: RSAPSSKeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
+ function __promisify__(
+ type: 'dsa',
+ options: DSAKeyPairOptions<'pem', 'pem'>
+ ): Promise<{
+ publicKey: string;
+ privateKey: string;
+ }>;
+ function __promisify__(
+ type: 'dsa',
+ options: DSAKeyPairOptions<'pem', 'der'>
+ ): Promise<{
+ publicKey: string;
+ privateKey: Buffer;
+ }>;
+ function __promisify__(
+ type: 'dsa',
+ options: DSAKeyPairOptions<'der', 'pem'>
+ ): Promise<{
+ publicKey: Buffer;
+ privateKey: string;
+ }>;
+ function __promisify__(
+ type: 'dsa',
+ options: DSAKeyPairOptions<'der', 'der'>
+ ): Promise<{
+ publicKey: Buffer;
+ privateKey: Buffer;
+ }>;
+ function __promisify__(type: 'dsa', options: DSAKeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
+ function __promisify__(
+ type: 'ec',
+ options: ECKeyPairOptions<'pem', 'pem'>
+ ): Promise<{
+ publicKey: string;
+ privateKey: string;
+ }>;
+ function __promisify__(
+ type: 'ec',
+ options: ECKeyPairOptions<'pem', 'der'>
+ ): Promise<{
+ publicKey: string;
+ privateKey: Buffer;
+ }>;
+ function __promisify__(
+ type: 'ec',
+ options: ECKeyPairOptions<'der', 'pem'>
+ ): Promise<{
+ publicKey: Buffer;
+ privateKey: string;
+ }>;
+ function __promisify__(
+ type: 'ec',
+ options: ECKeyPairOptions<'der', 'der'>
+ ): Promise<{
+ publicKey: Buffer;
+ privateKey: Buffer;
+ }>;
+ function __promisify__(type: 'ec', options: ECKeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
+ function __promisify__(
+ type: 'ed25519',
+ options: ED25519KeyPairOptions<'pem', 'pem'>
+ ): Promise<{
+ publicKey: string;
+ privateKey: string;
+ }>;
+ function __promisify__(
+ type: 'ed25519',
+ options: ED25519KeyPairOptions<'pem', 'der'>
+ ): Promise<{
+ publicKey: string;
+ privateKey: Buffer;
+ }>;
+ function __promisify__(
+ type: 'ed25519',
+ options: ED25519KeyPairOptions<'der', 'pem'>
+ ): Promise<{
+ publicKey: Buffer;
+ privateKey: string;
+ }>;
+ function __promisify__(
+ type: 'ed25519',
+ options: ED25519KeyPairOptions<'der', 'der'>
+ ): Promise<{
+ publicKey: Buffer;
+ privateKey: Buffer;
+ }>;
+ function __promisify__(type: 'ed25519', options?: ED25519KeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
+ function __promisify__(
+ type: 'ed448',
+ options: ED448KeyPairOptions<'pem', 'pem'>
+ ): Promise<{
+ publicKey: string;
+ privateKey: string;
+ }>;
+ function __promisify__(
+ type: 'ed448',
+ options: ED448KeyPairOptions<'pem', 'der'>
+ ): Promise<{
+ publicKey: string;
+ privateKey: Buffer;
+ }>;
+ function __promisify__(
+ type: 'ed448',
+ options: ED448KeyPairOptions<'der', 'pem'>
+ ): Promise<{
+ publicKey: Buffer;
+ privateKey: string;
+ }>;
+ function __promisify__(
+ type: 'ed448',
+ options: ED448KeyPairOptions<'der', 'der'>
+ ): Promise<{
+ publicKey: Buffer;
+ privateKey: Buffer;
+ }>;
+ function __promisify__(type: 'ed448', options?: ED448KeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
+ function __promisify__(
+ type: 'x25519',
+ options: X25519KeyPairOptions<'pem', 'pem'>
+ ): Promise<{
+ publicKey: string;
+ privateKey: string;
+ }>;
+ function __promisify__(
+ type: 'x25519',
+ options: X25519KeyPairOptions<'pem', 'der'>
+ ): Promise<{
+ publicKey: string;
+ privateKey: Buffer;
+ }>;
+ function __promisify__(
+ type: 'x25519',
+ options: X25519KeyPairOptions<'der', 'pem'>
+ ): Promise<{
+ publicKey: Buffer;
+ privateKey: string;
+ }>;
+ function __promisify__(
+ type: 'x25519',
+ options: X25519KeyPairOptions<'der', 'der'>
+ ): Promise<{
+ publicKey: Buffer;
+ privateKey: Buffer;
+ }>;
+ function __promisify__(type: 'x25519', options?: X25519KeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
+ function __promisify__(
+ type: 'x448',
+ options: X448KeyPairOptions<'pem', 'pem'>
+ ): Promise<{
+ publicKey: string;
+ privateKey: string;
+ }>;
+ function __promisify__(
+ type: 'x448',
+ options: X448KeyPairOptions<'pem', 'der'>
+ ): Promise<{
+ publicKey: string;
+ privateKey: Buffer;
+ }>;
+ function __promisify__(
+ type: 'x448',
+ options: X448KeyPairOptions<'der', 'pem'>
+ ): Promise<{
+ publicKey: Buffer;
+ privateKey: string;
+ }>;
+ function __promisify__(
+ type: 'x448',
+ options: X448KeyPairOptions<'der', 'der'>
+ ): Promise<{
+ publicKey: Buffer;
+ privateKey: Buffer;
+ }>;
+ function __promisify__(type: 'x448', options?: X448KeyPairKeyObjectOptions): Promise<KeyPairKeyObjectResult>;
+ }
+ /**
+ * Calculates and returns the signature for `data` using the given private key and
+ * algorithm. If `algorithm` is `null` or `undefined`, then the algorithm is
+ * dependent upon the key type (especially Ed25519 and Ed448).
+ *
+ * If `key` is not a `KeyObject`, this function behaves as if `key` had been
+ * passed to {@link createPrivateKey}. If it is an object, the following
+ * additional properties can be passed:
+ *
+ * If the `callback` function is provided this function uses libuv's threadpool.
+ * @since v12.0.0
+ */
+ function sign(algorithm: string | null | undefined, data: NodeJS.ArrayBufferView, key: KeyLike | SignKeyObjectInput | SignPrivateKeyInput): Buffer;
+ function sign(
+ algorithm: string | null | undefined,
+ data: NodeJS.ArrayBufferView,
+ key: KeyLike | SignKeyObjectInput | SignPrivateKeyInput,
+ callback: (error: Error | null, data: Buffer) => void
+ ): void;
+ /**
+ * Verifies the given signature for `data` using the given key and algorithm. If`algorithm` is `null` or `undefined`, then the algorithm is dependent upon the
+ * key type (especially Ed25519 and Ed448).
+ *
+ * If `key` is not a `KeyObject`, this function behaves as if `key` had been
+ * passed to {@link createPublicKey}. If it is an object, the following
+ * additional properties can be passed:
+ *
+ * The `signature` argument is the previously calculated signature for the `data`.
+ *
+ * Because public keys can be derived from private keys, a private key or a public
+ * key may be passed for `key`.
+ *
+ * If the `callback` function is provided this function uses libuv's threadpool.
+ * @since v12.0.0
+ */
+ function verify(
+ algorithm: string | null | undefined,
+ data: NodeJS.ArrayBufferView,
+ key: KeyLike | VerifyKeyObjectInput | VerifyPublicKeyInput | VerifyJsonWebKeyInput,
+ signature: NodeJS.ArrayBufferView
+ ): boolean;
+ function verify(
+ algorithm: string | null | undefined,
+ data: NodeJS.ArrayBufferView,
+ key: KeyLike | VerifyKeyObjectInput | VerifyPublicKeyInput | VerifyJsonWebKeyInput,
+ signature: NodeJS.ArrayBufferView,
+ callback: (error: Error | null, result: boolean) => void
+ ): void;
+ /**
+ * Computes the Diffie-Hellman secret based on a `privateKey` and a `publicKey`.
+ * Both keys must have the same `asymmetricKeyType`, which must be one of `'dh'`(for Diffie-Hellman), `'ec'` (for ECDH), `'x448'`, or `'x25519'` (for ECDH-ES).
+ * @since v13.9.0, v12.17.0
+ */
+ function diffieHellman(options: { privateKey: KeyObject; publicKey: KeyObject }): Buffer;
+ type CipherMode = 'cbc' | 'ccm' | 'cfb' | 'ctr' | 'ecb' | 'gcm' | 'ocb' | 'ofb' | 'stream' | 'wrap' | 'xts';
+ interface CipherInfoOptions {
+ /**
+ * A test key length.
+ */
+ keyLength?: number | undefined;
+ /**
+ * A test IV length.
+ */
+ ivLength?: number | undefined;
+ }
+ interface CipherInfo {
+ /**
+ * The name of the cipher.
+ */
+ name: string;
+ /**
+ * The nid of the cipher.
+ */
+ nid: number;
+ /**
+ * The block size of the cipher in bytes.
+ * This property is omitted when mode is 'stream'.
+ */
+ blockSize?: number | undefined;
+ /**
+ * The expected or default initialization vector length in bytes.
+ * This property is omitted if the cipher does not use an initialization vector.
+ */
+ ivLength?: number | undefined;
+ /**
+ * The expected or default key length in bytes.
+ */
+ keyLength: number;
+ /**
+ * The cipher mode.
+ */
+ mode: CipherMode;
+ }
+ /**
+ * Returns information about a given cipher.
+ *
+ * Some ciphers accept variable length keys and initialization vectors. By default,
+ * the `crypto.getCipherInfo()` method will return the default values for these
+ * ciphers. To test if a given key length or iv length is acceptable for given
+ * cipher, use the `keyLength` and `ivLength` options. If the given values are
+ * unacceptable, `undefined` will be returned.
+ * @since v15.0.0
+ * @param nameOrNid The name or nid of the cipher to query.
+ */
+ function getCipherInfo(nameOrNid: string | number, options?: CipherInfoOptions): CipherInfo | undefined;
+ /**
+ * HKDF is a simple key derivation function defined in RFC 5869\. The given `ikm`,`salt` and `info` are used with the `digest` to derive a key of `keylen` bytes.
+ *
+ * The supplied `callback` function is called with two arguments: `err` and`derivedKey`. If an errors occurs while deriving the key, `err` will be set;
+ * otherwise `err` will be `null`. The successfully generated `derivedKey` will
+ * be passed to the callback as an [ArrayBuffer](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer). An error will be thrown if any
+ * of the input arguments specify invalid values or types.
+ *
+ * ```js
+ * import { Buffer } from 'buffer';
+ * const {
+ * hkdf
+ * } = await import('crypto');
+ *
+ * hkdf('sha512', 'key', 'salt', 'info', 64, (err, derivedKey) => {
+ * if (err) throw err;
+ * console.log(Buffer.from(derivedKey).toString('hex')); // '24156e2...5391653'
+ * });
+ * ```
+ * @since v15.0.0
+ * @param digest The digest algorithm to use.
+ * @param ikm The input keying material. It must be at least one byte in length.
+ * @param salt The salt value. Must be provided but can be zero-length.
+ * @param info Additional info value. Must be provided but can be zero-length, and cannot be more than 1024 bytes.
+ * @param keylen The length of the key to generate. Must be greater than 0. The maximum allowable value is `255` times the number of bytes produced by the selected digest function (e.g. `sha512`
+ * generates 64-byte hashes, making the maximum HKDF output 16320 bytes).
+ */
+ function hkdf(digest: string, irm: BinaryLike | KeyObject, salt: BinaryLike, info: BinaryLike, keylen: number, callback: (err: Error | null, derivedKey: ArrayBuffer) => void): void;
+ /**
+ * Provides a synchronous HKDF key derivation function as defined in RFC 5869\. The
+ * given `ikm`, `salt` and `info` are used with the `digest` to derive a key of`keylen` bytes.
+ *
+ * The successfully generated `derivedKey` will be returned as an [ArrayBuffer](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer).
+ *
+ * An error will be thrown if any of the input arguments specify invalid values or
+ * types, or if the derived key cannot be generated.
+ *
+ * ```js
+ * import { Buffer } from 'buffer';
+ * const {
+ * hkdfSync
+ * } = await import('crypto');
+ *
+ * const derivedKey = hkdfSync('sha512', 'key', 'salt', 'info', 64);
+ * console.log(Buffer.from(derivedKey).toString('hex')); // '24156e2...5391653'
+ * ```
+ * @since v15.0.0
+ * @param digest The digest algorithm to use.
+ * @param ikm The input keying material. It must be at least one byte in length.
+ * @param salt The salt value. Must be provided but can be zero-length.
+ * @param info Additional info value. Must be provided but can be zero-length, and cannot be more than 1024 bytes.
+ * @param keylen The length of the key to generate. Must be greater than 0. The maximum allowable value is `255` times the number of bytes produced by the selected digest function (e.g. `sha512`
+ * generates 64-byte hashes, making the maximum HKDF output 16320 bytes).
+ */
+ function hkdfSync(digest: string, ikm: BinaryLike | KeyObject, salt: BinaryLike, info: BinaryLike, keylen: number): ArrayBuffer;
+ interface SecureHeapUsage {
+ /**
+ * The total allocated secure heap size as specified using the `--secure-heap=n` command-line flag.
+ */
+ total: number;
+ /**
+ * The minimum allocation from the secure heap as specified using the `--secure-heap-min` command-line flag.
+ */
+ min: number;
+ /**
+ * The total number of bytes currently allocated from the secure heap.
+ */
+ used: number;
+ /**
+ * The calculated ratio of `used` to `total` allocated bytes.
+ */
+ utilization: number;
+ }
+ /**
+ * @since v15.6.0
+ */
+ function secureHeapUsed(): SecureHeapUsage;
+ interface RandomUUIDOptions {
+ /**
+ * By default, to improve performance,
+ * Node.js will pre-emptively generate and persistently cache enough
+ * random data to generate up to 128 random UUIDs. To generate a UUID
+ * without using the cache, set `disableEntropyCache` to `true`.
+ *
+ * @default `false`
+ */
+ disableEntropyCache?: boolean | undefined;
+ }
+ type UUID = `${string}-${string}-${string}-${string}-${string}`;
+ /**
+ * Generates a random [RFC 4122](https://www.rfc-editor.org/rfc/rfc4122.txt) version 4 UUID. The UUID is generated using a
+ * cryptographic pseudorandom number generator.
+ * @since v15.6.0, v14.17.0
+ */
+ function randomUUID(options?: RandomUUIDOptions): UUID;
+ interface X509CheckOptions {
+ /**
+ * @default 'always'
+ */
+ subject?: 'always' | 'default' | 'never';
+ /**
+ * @default true
+ */
+ wildcards?: boolean;
+ /**
+ * @default true
+ */
+ partialWildcards?: boolean;
+ /**
+ * @default false
+ */
+ multiLabelWildcards?: boolean;
+ /**
+ * @default false
+ */
+ singleLabelSubdomains?: boolean;
+ }
+ /**
+ * Encapsulates an X509 certificate and provides read-only access to
+ * its information.
+ *
+ * ```js
+ * const { X509Certificate } = await import('crypto');
+ *
+ * const x509 = new X509Certificate('{... pem encoded cert ...}');
+ *
+ * console.log(x509.subject);
+ * ```
+ * @since v15.6.0
+ */
+ class X509Certificate {
+ /**
+ * Will be \`true\` if this is a Certificate Authority (CA) certificate.
+ * @since v15.6.0
+ */
+ readonly ca: boolean;
+ /**
+ * The SHA-1 fingerprint of this certificate.
+ *
+ * Because SHA-1 is cryptographically broken and because the security of SHA-1 is
+ * significantly worse than that of algorithms that are commonly used to sign
+ * certificates, consider using `x509.fingerprint256` instead.
+ * @since v15.6.0
+ */
+ readonly fingerprint: string;
+ /**
+ * The SHA-256 fingerprint of this certificate.
+ * @since v15.6.0
+ */
+ readonly fingerprint256: string;
+ /**
+ * The SHA-512 fingerprint of this certificate.
+ * @since v16.14.0
+ */
+ readonly fingerprint512: string;
+ /**
+ * The complete subject of this certificate.
+ * @since v15.6.0
+ */
+ readonly subject: string;
+ /**
+ * The subject alternative name specified for this certificate or `undefined`
+ * if not available.
+ * @since v15.6.0
+ */
+ readonly subjectAltName: string | undefined;
+ /**
+ * The information access content of this certificate or `undefined` if not
+ * available.
+ * @since v15.6.0
+ */
+ readonly infoAccess: string | undefined;
+ /**
+ * An array detailing the key usages for this certificate.
+ * @since v15.6.0
+ */
+ readonly keyUsage: string[];
+ /**
+ * The issuer identification included in this certificate.
+ * @since v15.6.0
+ */
+ readonly issuer: string;
+ /**
+ * The issuer certificate or `undefined` if the issuer certificate is not
+ * available.
+ * @since v15.9.0
+ */
+ readonly issuerCertificate?: X509Certificate | undefined;
+ /**
+ * The public key `KeyObject` for this certificate.
+ * @since v15.6.0
+ */
+ readonly publicKey: KeyObject;
+ /**
+ * A `Buffer` containing the DER encoding of this certificate.
+ * @since v15.6.0
+ */
+ readonly raw: Buffer;
+ /**
+ * The serial number of this certificate.
+ *
+ * Serial numbers are assigned by certificate authorities and do not uniquely
+ * identify certificates. Consider using `x509.fingerprint256` as a unique
+ * identifier instead.
+ * @since v15.6.0
+ */
+ readonly serialNumber: string;
+ /**
+ * The date/time from which this certificate is considered valid.
+ * @since v15.6.0
+ */
+ readonly validFrom: string;
+ /**
+ * The date/time until which this certificate is considered valid.
+ * @since v15.6.0
+ */
+ readonly validTo: string;
+ constructor(buffer: BinaryLike);
+ /**
+ * Checks whether the certificate matches the given email address.
+ *
+ * If the `'subject'` option is undefined or set to `'default'`, the certificate
+ * subject is only considered if the subject alternative name extension either does
+ * not exist or does not contain any email addresses.
+ *
+ * If the `'subject'` option is set to `'always'` and if the subject alternative
+ * name extension either does not exist or does not contain a matching email
+ * address, the certificate subject is considered.
+ *
+ * If the `'subject'` option is set to `'never'`, the certificate subject is never
+ * considered, even if the certificate contains no subject alternative names.
+ * @since v15.6.0
+ * @return Returns `email` if the certificate matches, `undefined` if it does not.
+ */
+ checkEmail(email: string, options?: Pick<X509CheckOptions, 'subject'>): string | undefined;
+ /**
+ * Checks whether the certificate matches the given host name.
+ *
+ * If the certificate matches the given host name, the matching subject name is
+ * returned. The returned name might be an exact match (e.g., `foo.example.com`)
+ * or it might contain wildcards (e.g., `*.example.com`). Because host name
+ * comparisons are case-insensitive, the returned subject name might also differ
+ * from the given `name` in capitalization.
+ *
+ * If the `'subject'` option is undefined or set to `'default'`, the certificate
+ * subject is only considered if the subject alternative name extension either does
+ * not exist or does not contain any DNS names. This behavior is consistent with [RFC 2818](https://www.rfc-editor.org/rfc/rfc2818.txt) ("HTTP Over TLS").
+ *
+ * If the `'subject'` option is set to `'always'` and if the subject alternative
+ * name extension either does not exist or does not contain a matching DNS name,
+ * the certificate subject is considered.
+ *
+ * If the `'subject'` option is set to `'never'`, the certificate subject is never
+ * considered, even if the certificate contains no subject alternative names.
+ * @since v15.6.0
+ * @return Returns a subject name that matches `name`, or `undefined` if no subject name matches `name`.
+ */
+ checkHost(name: string, options?: X509CheckOptions): string | undefined;
+ /**
+ * Checks whether the certificate matches the given IP address (IPv4 or IPv6).
+ *
+ * Only [RFC 5280](https://www.rfc-editor.org/rfc/rfc5280.txt) `iPAddress` subject alternative names are considered, and they
+ * must match the given `ip` address exactly. Other subject alternative names as
+ * well as the subject field of the certificate are ignored.
+ * @since v15.6.0
+ * @return Returns `ip` if the certificate matches, `undefined` if it does not.
+ */
+ checkIP(ip: string): string | undefined;
+ /**
+ * Checks whether this certificate was issued by the given `otherCert`.
+ * @since v15.6.0
+ */
+ checkIssued(otherCert: X509Certificate): boolean;
+ /**
+ * Checks whether the public key for this certificate is consistent with
+ * the given private key.
+ * @since v15.6.0
+ * @param privateKey A private key.
+ */
+ checkPrivateKey(privateKey: KeyObject): boolean;
+ /**
+ * There is no standard JSON encoding for X509 certificates. The`toJSON()` method returns a string containing the PEM encoded
+ * certificate.
+ * @since v15.6.0
+ */
+ toJSON(): string;
+ /**
+ * Returns information about this certificate using the legacy `certificate object` encoding.
+ * @since v15.6.0
+ */
+ toLegacyObject(): PeerCertificate;
+ /**
+ * Returns the PEM-encoded certificate.
+ * @since v15.6.0
+ */
+ toString(): string;
+ /**
+ * Verifies that this certificate was signed by the given public key.
+ * Does not perform any other validation checks on the certificate.
+ * @since v15.6.0
+ * @param publicKey A public key.
+ */
+ verify(publicKey: KeyObject): boolean;
+ }
+ type LargeNumberLike = NodeJS.ArrayBufferView | SharedArrayBuffer | ArrayBuffer | bigint;
+ interface GeneratePrimeOptions {
+ add?: LargeNumberLike | undefined;
+ rem?: LargeNumberLike | undefined;
+ /**
+ * @default false
+ */
+ safe?: boolean | undefined;
+ bigint?: boolean | undefined;
+ }
+ interface GeneratePrimeOptionsBigInt extends GeneratePrimeOptions {
+ bigint: true;
+ }
+ interface GeneratePrimeOptionsArrayBuffer extends GeneratePrimeOptions {
+ bigint?: false | undefined;
+ }
+ /**
+ * Generates a pseudorandom prime of `size` bits.
+ *
+ * If `options.safe` is `true`, the prime will be a safe prime -- that is,`(prime - 1) / 2` will also be a prime.
+ *
+ * The `options.add` and `options.rem` parameters can be used to enforce additional
+ * requirements, e.g., for Diffie-Hellman:
+ *
+ * * If `options.add` and `options.rem` are both set, the prime will satisfy the
+ * condition that `prime % add = rem`.
+ * * If only `options.add` is set and `options.safe` is not `true`, the prime will
+ * satisfy the condition that `prime % add = 1`.
+ * * If only `options.add` is set and `options.safe` is set to `true`, the prime
+ * will instead satisfy the condition that `prime % add = 3`. This is necessary
+ * because `prime % add = 1` for `options.add > 2` would contradict the condition
+ * enforced by `options.safe`.
+ * * `options.rem` is ignored if `options.add` is not given.
+ *
+ * Both `options.add` and `options.rem` must be encoded as big-endian sequences
+ * if given as an `ArrayBuffer`, `SharedArrayBuffer`, `TypedArray`, `Buffer`, or`DataView`.
+ *
+ * By default, the prime is encoded as a big-endian sequence of octets
+ * in an [ArrayBuffer](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer). If the `bigint` option is `true`, then a
+ * [bigint](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt) is provided.
+ * @since v15.8.0
+ * @param size The size (in bits) of the prime to generate.
+ */
+ function generatePrime(size: number, callback: (err: Error | null, prime: ArrayBuffer) => void): void;
+ function generatePrime(size: number, options: GeneratePrimeOptionsBigInt, callback: (err: Error | null, prime: bigint) => void): void;
+ function generatePrime(size: number, options: GeneratePrimeOptionsArrayBuffer, callback: (err: Error | null, prime: ArrayBuffer) => void): void;
+ function generatePrime(size: number, options: GeneratePrimeOptions, callback: (err: Error | null, prime: ArrayBuffer | bigint) => void): void;
+ /**
+ * Generates a pseudorandom prime of `size` bits.
+ *
+ * If `options.safe` is `true`, the prime will be a safe prime -- that is,`(prime - 1) / 2` will also be a prime.
+ *
+ * The `options.add` and `options.rem` parameters can be used to enforce additional
+ * requirements, e.g., for Diffie-Hellman:
+ *
+ * * If `options.add` and `options.rem` are both set, the prime will satisfy the
+ * condition that `prime % add = rem`.
+ * * If only `options.add` is set and `options.safe` is not `true`, the prime will
+ * satisfy the condition that `prime % add = 1`.
+ * * If only `options.add` is set and `options.safe` is set to `true`, the prime
+ * will instead satisfy the condition that `prime % add = 3`. This is necessary
+ * because `prime % add = 1` for `options.add > 2` would contradict the condition
+ * enforced by `options.safe`.
+ * * `options.rem` is ignored if `options.add` is not given.
+ *
+ * Both `options.add` and `options.rem` must be encoded as big-endian sequences
+ * if given as an `ArrayBuffer`, `SharedArrayBuffer`, `TypedArray`, `Buffer`, or`DataView`.
+ *
+ * By default, the prime is encoded as a big-endian sequence of octets
+ * in an [ArrayBuffer](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/ArrayBuffer). If the `bigint` option is `true`, then a
+ * [bigint](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/BigInt) is provided.
+ * @since v15.8.0
+ * @param size The size (in bits) of the prime to generate.
+ */
+ function generatePrimeSync(size: number): ArrayBuffer;
+ function generatePrimeSync(size: number, options: GeneratePrimeOptionsBigInt): bigint;
+ function generatePrimeSync(size: number, options: GeneratePrimeOptionsArrayBuffer): ArrayBuffer;
+ function generatePrimeSync(size: number, options: GeneratePrimeOptions): ArrayBuffer | bigint;
+ interface CheckPrimeOptions {
+ /**
+ * The number of Miller-Rabin probabilistic primality iterations to perform.
+ * When the value is 0 (zero), a number of checks is used that yields a false positive rate of at most `2**-64` for random input.
+ * Care must be used when selecting a number of checks.
+ * Refer to the OpenSSL documentation for the BN_is_prime_ex function nchecks options for more details.
+ *
+ * @default 0
+ */
+ checks?: number | undefined;
+ }
+ /**
+ * Checks the primality of the `candidate`.
+ * @since v15.8.0
+ * @param candidate A possible prime encoded as a sequence of big endian octets of arbitrary length.
+ */
+ function checkPrime(value: LargeNumberLike, callback: (err: Error | null, result: boolean) => void): void;
+ function checkPrime(value: LargeNumberLike, options: CheckPrimeOptions, callback: (err: Error | null, result: boolean) => void): void;
+ /**
+ * Checks the primality of the `candidate`.
+ * @since v15.8.0
+ * @param candidate A possible prime encoded as a sequence of big endian octets of arbitrary length.
+ * @return `true` if the candidate is a prime with an error probability less than `0.25 ** options.checks`.
+ */
+ function checkPrimeSync(candidate: LargeNumberLike, options?: CheckPrimeOptions): boolean;
+ /**
+ * Load and set the `engine` for some or all OpenSSL functions (selected by flags).
+ *
+ * `engine` could be either an id or a path to the engine's shared library.
+ *
+ * The optional `flags` argument uses `ENGINE_METHOD_ALL` by default.
+ * The `flags` is a bit field taking one of or a mix of the following flags (defined in `crypto.constants`):
+ *
+ * - `crypto.constants.ENGINE_METHOD_RSA`
+ * - `crypto.constants.ENGINE_METHOD_DSA`
+ * - `crypto.constants.ENGINE_METHOD_DH`
+ * - `crypto.constants.ENGINE_METHOD_RAND`
+ * - `crypto.constants.ENGINE_METHOD_EC`
+ * - `crypto.constants.ENGINE_METHOD_CIPHERS`
+ * - `crypto.constants.ENGINE_METHOD_DIGESTS`
+ * - `crypto.constants.ENGINE_METHOD_PKEY_METHS`
+ * - `crypto.constants.ENGINE_METHOD_PKEY_ASN1_METHS`
+ * - `crypto.constants.ENGINE_METHOD_ALL`
+ * - `crypto.constants.ENGINE_METHOD_NONE`
+ *
+ * The flags below are deprecated in OpenSSL-1.1.0.
+ *
+ * - `crypto.constants.ENGINE_METHOD_ECDH`
+ * - `crypto.constants.ENGINE_METHOD_ECDSA`
+ * - `crypto.constants.ENGINE_METHOD_STORE`
+ * @since v0.11.11
+ * @param [flags=crypto.constants.ENGINE_METHOD_ALL]
+ */
+ function setEngine(engine: string, flags?: number): void;
+ /**
+ * A convenient alias for `crypto.webcrypto.getRandomValues()`.
+ * This implementation is not compliant with the Web Crypto spec,
+ * to write web-compatible code use `crypto.webcrypto.getRandomValues()` instead.
+ * @since v17.4.0
+ * @returns Returns `typedArray`.
+ */
+ function getRandomValues<T extends webcrypto.BufferSource>(typedArray: T): T;
+ /**
+ * A convenient alias for `crypto.webcrypto.subtle`.
+ * @since v17.4.0
+ */
+ const subtle: webcrypto.SubtleCrypto;
+ /**
+ * An implementation of the Web Crypto API standard.
+ *
+ * See the {@link https://nodejs.org/docs/latest/api/webcrypto.html Web Crypto API documentation} for details.
+ * @since v15.0.0
+ */
+ const webcrypto: webcrypto.Crypto;
+ namespace webcrypto {
+ type BufferSource = ArrayBufferView | ArrayBuffer;
+ type KeyFormat = 'jwk' | 'pkcs8' | 'raw' | 'spki';
+ type KeyType = 'private' | 'public' | 'secret';
+ type KeyUsage = 'decrypt' | 'deriveBits' | 'deriveKey' | 'encrypt' | 'sign' | 'unwrapKey' | 'verify' | 'wrapKey';
+ type AlgorithmIdentifier = Algorithm | string;
+ type HashAlgorithmIdentifier = AlgorithmIdentifier;
+ type NamedCurve = string;
+ type BigInteger = Uint8Array;
+ interface AesCbcParams extends Algorithm {
+ iv: BufferSource;
+ }
+ interface AesCtrParams extends Algorithm {
+ counter: BufferSource;
+ length: number;
+ }
+ interface AesDerivedKeyParams extends Algorithm {
+ length: number;
+ }
+ interface AesGcmParams extends Algorithm {
+ additionalData?: BufferSource;
+ iv: BufferSource;
+ tagLength?: number;
+ }
+ interface AesKeyAlgorithm extends KeyAlgorithm {
+ length: number;
+ }
+ interface AesKeyGenParams extends Algorithm {
+ length: number;
+ }
+ interface Algorithm {
+ name: string;
+ }
+ interface EcKeyAlgorithm extends KeyAlgorithm {
+ namedCurve: NamedCurve;
+ }
+ interface EcKeyGenParams extends Algorithm {
+ namedCurve: NamedCurve;
+ }
+ interface EcKeyImportParams extends Algorithm {
+ namedCurve: NamedCurve;
+ }
+ interface EcdhKeyDeriveParams extends Algorithm {
+ public: CryptoKey;
+ }
+ interface EcdsaParams extends Algorithm {
+ hash: HashAlgorithmIdentifier;
+ }
+ interface Ed448Params extends Algorithm {
+ context?: BufferSource;
+ }
+ interface HkdfParams extends Algorithm {
+ hash: HashAlgorithmIdentifier;
+ info: BufferSource;
+ salt: BufferSource;
+ }
+ interface HmacImportParams extends Algorithm {
+ hash: HashAlgorithmIdentifier;
+ length?: number;
+ }
+ interface HmacKeyAlgorithm extends KeyAlgorithm {
+ hash: KeyAlgorithm;
+ length: number;
+ }
+ interface HmacKeyGenParams extends Algorithm {
+ hash: HashAlgorithmIdentifier;
+ length?: number;
+ }
+ interface JsonWebKey {
+ alg?: string;
+ crv?: string;
+ d?: string;
+ dp?: string;
+ dq?: string;
+ e?: string;
+ ext?: boolean;
+ k?: string;
+ key_ops?: string[];
+ kty?: string;
+ n?: string;
+ oth?: RsaOtherPrimesInfo[];
+ p?: string;
+ q?: string;
+ qi?: string;
+ use?: string;
+ x?: string;
+ y?: string;
+ }
+ interface KeyAlgorithm {
+ name: string;
+ }
+ interface Pbkdf2Params extends Algorithm {
+ hash: HashAlgorithmIdentifier;
+ iterations: number;
+ salt: BufferSource;
+ }
+ interface RsaHashedImportParams extends Algorithm {
+ hash: HashAlgorithmIdentifier;
+ }
+ interface RsaHashedKeyAlgorithm extends RsaKeyAlgorithm {
+ hash: KeyAlgorithm;
+ }
+ interface RsaHashedKeyGenParams extends RsaKeyGenParams {
+ hash: HashAlgorithmIdentifier;
+ }
+ interface RsaKeyAlgorithm extends KeyAlgorithm {
+ modulusLength: number;
+ publicExponent: BigInteger;
+ }
+ interface RsaKeyGenParams extends Algorithm {
+ modulusLength: number;
+ publicExponent: BigInteger;
+ }
+ interface RsaOaepParams extends Algorithm {
+ label?: BufferSource;
+ }
+ interface RsaOtherPrimesInfo {
+ d?: string;
+ r?: string;
+ t?: string;
+ }
+ interface RsaPssParams extends Algorithm {
+ saltLength: number;
+ }
+ /**
+ * Calling `require('node:crypto').webcrypto` returns an instance of the `Crypto` class.
+ * `Crypto` is a singleton that provides access to the remainder of the crypto API.
+ * @since v15.0.0
+ */
+ interface Crypto {
+ /**
+ * Provides access to the `SubtleCrypto` API.
+ * @since v15.0.0
+ */
+ readonly subtle: SubtleCrypto;
+ /**
+ * Generates cryptographically strong random values.
+ * The given `typedArray` is filled with random values, and a reference to `typedArray` is returned.
+ *
+ * The given `typedArray` must be an integer-based instance of {@link NodeJS.TypedArray}, i.e. `Float32Array` and `Float64Array` are not accepted.
+ *
+ * An error will be thrown if the given `typedArray` is larger than 65,536 bytes.
+ * @since v15.0.0
+ */
+ getRandomValues<T extends Exclude<NodeJS.TypedArray, Float32Array | Float64Array>>(typedArray: T): T;
+ /**
+ * Generates a random {@link https://www.rfc-editor.org/rfc/rfc4122.txt RFC 4122} version 4 UUID.
+ * The UUID is generated using a cryptographic pseudorandom number generator.
+ * @since v16.7.0
+ */
+ randomUUID(): UUID;
+ CryptoKey: CryptoKeyConstructor;
+ }
+ // This constructor throws ILLEGAL_CONSTRUCTOR so it should not be newable.
+ interface CryptoKeyConstructor {
+ /** Illegal constructor */
+ (_: { readonly _: unique symbol }): never; // Allows instanceof to work but not be callable by the user.
+ readonly length: 0;
+ readonly name: 'CryptoKey';
+ readonly prototype: CryptoKey;
+ }
+ /**
+ * @since v15.0.0
+ */
+ interface CryptoKey {
+ /**
+ * An object detailing the algorithm for which the key can be used along with additional algorithm-specific parameters.
+ * @since v15.0.0
+ */
+ readonly algorithm: KeyAlgorithm;
+ /**
+ * When `true`, the {@link CryptoKey} can be extracted using either `subtleCrypto.exportKey()` or `subtleCrypto.wrapKey()`.
+ * @since v15.0.0
+ */
+ readonly extractable: boolean;
+ /**
+ * A string identifying whether the key is a symmetric (`'secret'`) or asymmetric (`'private'` or `'public'`) key.
+ * @since v15.0.0
+ */
+ readonly type: KeyType;
+ /**
+ * An array of strings identifying the operations for which the key may be used.
+ *
+ * The possible usages are:
+ * - `'encrypt'` - The key may be used to encrypt data.
+ * - `'decrypt'` - The key may be used to decrypt data.
+ * - `'sign'` - The key may be used to generate digital signatures.
+ * - `'verify'` - The key may be used to verify digital signatures.
+ * - `'deriveKey'` - The key may be used to derive a new key.
+ * - `'deriveBits'` - The key may be used to derive bits.
+ * - `'wrapKey'` - The key may be used to wrap another key.
+ * - `'unwrapKey'` - The key may be used to unwrap another key.
+ *
+ * Valid key usages depend on the key algorithm (identified by `cryptokey.algorithm.name`).
+ * @since v15.0.0
+ */
+ readonly usages: KeyUsage[];
+ }
+ /**
+ * The `CryptoKeyPair` is a simple dictionary object with `publicKey` and `privateKey` properties, representing an asymmetric key pair.
+ * @since v15.0.0
+ */
+ interface CryptoKeyPair {
+ /**
+ * A {@link CryptoKey} whose type will be `'private'`.
+ * @since v15.0.0
+ */
+ privateKey: CryptoKey;
+ /**
+ * A {@link CryptoKey} whose type will be `'public'`.
+ * @since v15.0.0
+ */
+ publicKey: CryptoKey;
+ }
+ /**
+ * @since v15.0.0
+ */
+ interface SubtleCrypto {
+ /**
+ * Using the method and parameters specified in `algorithm` and the keying material provided by `key`,
+ * `subtle.decrypt()` attempts to decipher the provided `data`. If successful,
+ * the returned promise will be resolved with an `<ArrayBuffer>` containing the plaintext result.
+ *
+ * The algorithms currently supported include:
+ *
+ * - `'RSA-OAEP'`
+ * - `'AES-CTR'`
+ * - `'AES-CBC'`
+ * - `'AES-GCM'`
+ * @since v15.0.0
+ */
+ decrypt(algorithm: AlgorithmIdentifier | RsaOaepParams | AesCtrParams | AesCbcParams | AesGcmParams, key: CryptoKey, data: BufferSource): Promise<ArrayBuffer>;
+ /**
+ * Using the method and parameters specified in `algorithm` and the keying material provided by `baseKey`,
+ * `subtle.deriveBits()` attempts to generate `length` bits.
+ * The Node.js implementation requires that when `length` is a number it must be multiple of `8`.
+ * When `length` is `null` the maximum number of bits for a given algorithm is generated. This is allowed
+ * for the `'ECDH'`, `'X25519'`, and `'X448'` algorithms.
+ * If successful, the returned promise will be resolved with an `<ArrayBuffer>` containing the generated data.
+ *
+ * The algorithms currently supported include:
+ *
+ * - `'ECDH'`
+ * - `'X25519'`
+ * - `'X448'`
+ * - `'HKDF'`
+ * - `'PBKDF2'`
+ * @since v15.0.0
+ */
+ deriveBits(algorithm: EcdhKeyDeriveParams, baseKey: CryptoKey, length: number | null): Promise<ArrayBuffer>;
+ deriveBits(algorithm: AlgorithmIdentifier | HkdfParams | Pbkdf2Params, baseKey: CryptoKey, length: number): Promise<ArrayBuffer>;
+ /**
+ * Using the method and parameters specified in `algorithm`, and the keying material provided by `baseKey`,
+ * `subtle.deriveKey()` attempts to generate a new <CryptoKey>` based on the method and parameters in `derivedKeyAlgorithm`.
+ *
+ * Calling `subtle.deriveKey()` is equivalent to calling `subtle.deriveBits()` to generate raw keying material,
+ * then passing the result into the `subtle.importKey()` method using the `deriveKeyAlgorithm`, `extractable`, and `keyUsages` parameters as input.
+ *
+ * The algorithms currently supported include:
+ *
+ * - `'ECDH'`
+ * - `'X25519'`
+ * - `'X448'`
+ * - `'HKDF'`
+ * - `'PBKDF2'`
+ * @param keyUsages See {@link https://nodejs.org/docs/latest/api/webcrypto.html#cryptokeyusages Key usages}.
+ * @since v15.0.0
+ */
+ deriveKey(
+ algorithm: AlgorithmIdentifier | EcdhKeyDeriveParams | HkdfParams | Pbkdf2Params,
+ baseKey: CryptoKey,
+ derivedKeyAlgorithm: AlgorithmIdentifier | AesDerivedKeyParams | HmacImportParams | HkdfParams | Pbkdf2Params,
+ extractable: boolean,
+ keyUsages: ReadonlyArray<KeyUsage>
+ ): Promise<CryptoKey>;
+ /**
+ * Using the method identified by `algorithm`, `subtle.digest()` attempts to generate a digest of `data`.
+ * If successful, the returned promise is resolved with an `<ArrayBuffer>` containing the computed digest.
+ *
+ * If `algorithm` is provided as a `<string>`, it must be one of:
+ *
+ * - `'SHA-1'`
+ * - `'SHA-256'`
+ * - `'SHA-384'`
+ * - `'SHA-512'`
+ *
+ * If `algorithm` is provided as an `<Object>`, it must have a `name` property whose value is one of the above.
+ * @since v15.0.0
+ */
+ digest(algorithm: AlgorithmIdentifier, data: BufferSource): Promise<ArrayBuffer>;
+ /**
+ * Using the method and parameters specified by `algorithm` and the keying material provided by `key`,
+ * `subtle.encrypt()` attempts to encipher `data`. If successful,
+ * the returned promise is resolved with an `<ArrayBuffer>` containing the encrypted result.
+ *
+ * The algorithms currently supported include:
+ *
+ * - `'RSA-OAEP'`
+ * - `'AES-CTR'`
+ * - `'AES-CBC'`
+ * - `'AES-GCM'`
+ * @since v15.0.0
+ */
+ encrypt(algorithm: AlgorithmIdentifier | RsaOaepParams | AesCtrParams | AesCbcParams | AesGcmParams, key: CryptoKey, data: BufferSource): Promise<ArrayBuffer>;
+ /**
+ * Exports the given key into the specified format, if supported.
+ *
+ * If the `<CryptoKey>` is not extractable, the returned promise will reject.
+ *
+ * When `format` is either `'pkcs8'` or `'spki'` and the export is successful,
+ * the returned promise will be resolved with an `<ArrayBuffer>` containing the exported key data.
+ *
+ * When `format` is `'jwk'` and the export is successful, the returned promise will be resolved with a
+ * JavaScript object conforming to the {@link https://tools.ietf.org/html/rfc7517 JSON Web Key} specification.
+ * @param format Must be one of `'raw'`, `'pkcs8'`, `'spki'`, or `'jwk'`.
+ * @returns `<Promise>` containing `<ArrayBuffer>`.
+ * @since v15.0.0
+ */
+ exportKey(format: 'jwk', key: CryptoKey): Promise<JsonWebKey>;
+ exportKey(format: Exclude<KeyFormat, 'jwk'>, key: CryptoKey): Promise<ArrayBuffer>;
+ /**
+ * Using the method and parameters provided in `algorithm`,
+ * `subtle.generateKey()` attempts to generate new keying material.
+ * Depending the method used, the method may generate either a single `<CryptoKey>` or a `<CryptoKeyPair>`.
+ *
+ * The `<CryptoKeyPair>` (public and private key) generating algorithms supported include:
+ *
+ * - `'RSASSA-PKCS1-v1_5'`
+ * - `'RSA-PSS'`
+ * - `'RSA-OAEP'`
+ * - `'ECDSA'`
+ * - `'Ed25519'`
+ * - `'Ed448'`
+ * - `'ECDH'`
+ * - `'X25519'`
+ * - `'X448'`
+ * The `<CryptoKey>` (secret key) generating algorithms supported include:
+ *
+ * - `'HMAC'`
+ * - `'AES-CTR'`
+ * - `'AES-CBC'`
+ * - `'AES-GCM'`
+ * - `'AES-KW'`
+ * @param keyUsages See {@link https://nodejs.org/docs/latest/api/webcrypto.html#cryptokeyusages Key usages}.
+ * @since v15.0.0
+ */
+ generateKey(algorithm: RsaHashedKeyGenParams | EcKeyGenParams, extractable: boolean, keyUsages: ReadonlyArray<KeyUsage>): Promise<CryptoKeyPair>;
+ generateKey(algorithm: AesKeyGenParams | HmacKeyGenParams | Pbkdf2Params, extractable: boolean, keyUsages: ReadonlyArray<KeyUsage>): Promise<CryptoKey>;
+ generateKey(algorithm: AlgorithmIdentifier, extractable: boolean, keyUsages: KeyUsage[]): Promise<CryptoKeyPair | CryptoKey>;
+ /**
+ * The `subtle.importKey()` method attempts to interpret the provided `keyData` as the given `format`
+ * to create a `<CryptoKey>` instance using the provided `algorithm`, `extractable`, and `keyUsages` arguments.
+ * If the import is successful, the returned promise will be resolved with the created `<CryptoKey>`.
+ *
+ * If importing a `'PBKDF2'` key, `extractable` must be `false`.
+ * @param format Must be one of `'raw'`, `'pkcs8'`, `'spki'`, or `'jwk'`.
+ * @param keyUsages See {@link https://nodejs.org/docs/latest/api/webcrypto.html#cryptokeyusages Key usages}.
+ * @since v15.0.0
+ */
+ importKey(
+ format: 'jwk',
+ keyData: JsonWebKey,
+ algorithm: AlgorithmIdentifier | RsaHashedImportParams | EcKeyImportParams | HmacImportParams | AesKeyAlgorithm,
+ extractable: boolean,
+ keyUsages: ReadonlyArray<KeyUsage>
+ ): Promise<CryptoKey>;
+ importKey(
+ format: Exclude<KeyFormat, 'jwk'>,
+ keyData: BufferSource,
+ algorithm: AlgorithmIdentifier | RsaHashedImportParams | EcKeyImportParams | HmacImportParams | AesKeyAlgorithm,
+ extractable: boolean,
+ keyUsages: KeyUsage[]
+ ): Promise<CryptoKey>;
+ /**
+ * Using the method and parameters given by `algorithm` and the keying material provided by `key`,
+ * `subtle.sign()` attempts to generate a cryptographic signature of `data`. If successful,
+ * the returned promise is resolved with an `<ArrayBuffer>` containing the generated signature.
+ *
+ * The algorithms currently supported include:
+ *
+ * - `'RSASSA-PKCS1-v1_5'`
+ * - `'RSA-PSS'`
+ * - `'ECDSA'`
+ * - `'Ed25519'`
+ * - `'Ed448'`
+ * - `'HMAC'`
+ * @since v15.0.0
+ */
+ sign(algorithm: AlgorithmIdentifier | RsaPssParams | EcdsaParams | Ed448Params, key: CryptoKey, data: BufferSource): Promise<ArrayBuffer>;
+ /**
+ * In cryptography, "wrapping a key" refers to exporting and then encrypting the keying material.
+ * The `subtle.unwrapKey()` method attempts to decrypt a wrapped key and create a `<CryptoKey>` instance.
+ * It is equivalent to calling `subtle.decrypt()` first on the encrypted key data (using the `wrappedKey`, `unwrapAlgo`, and `unwrappingKey` arguments as input)
+ * then passing the results in to the `subtle.importKey()` method using the `unwrappedKeyAlgo`, `extractable`, and `keyUsages` arguments as inputs.
+ * If successful, the returned promise is resolved with a `<CryptoKey>` object.
+ *
+ * The wrapping algorithms currently supported include:
+ *
+ * - `'RSA-OAEP'`
+ * - `'AES-CTR'`
+ * - `'AES-CBC'`
+ * - `'AES-GCM'`
+ * - `'AES-KW'`
+ *
+ * The unwrapped key algorithms supported include:
+ *
+ * - `'RSASSA-PKCS1-v1_5'`
+ * - `'RSA-PSS'`
+ * - `'RSA-OAEP'`
+ * - `'ECDSA'`
+ * - `'Ed25519'`
+ * - `'Ed448'`
+ * - `'ECDH'`
+ * - `'X25519'`
+ * - `'X448'`
+ * - `'HMAC'`
+ * - `'AES-CTR'`
+ * - `'AES-CBC'`
+ * - `'AES-GCM'`
+ * - `'AES-KW'`
+ * @param format Must be one of `'raw'`, `'pkcs8'`, `'spki'`, or `'jwk'`.
+ * @param keyUsages See {@link https://nodejs.org/docs/latest/api/webcrypto.html#cryptokeyusages Key usages}.
+ * @since v15.0.0
+ */
+ unwrapKey(
+ format: KeyFormat,
+ wrappedKey: BufferSource,
+ unwrappingKey: CryptoKey,
+ unwrapAlgorithm: AlgorithmIdentifier | RsaOaepParams | AesCtrParams | AesCbcParams | AesGcmParams,
+ unwrappedKeyAlgorithm: AlgorithmIdentifier | RsaHashedImportParams | EcKeyImportParams | HmacImportParams | AesKeyAlgorithm,
+ extractable: boolean,
+ keyUsages: KeyUsage[]
+ ): Promise<CryptoKey>;
+ /**
+ * Using the method and parameters given in `algorithm` and the keying material provided by `key`,
+ * `subtle.verify()` attempts to verify that `signature` is a valid cryptographic signature of `data`.
+ * The returned promise is resolved with either `true` or `false`.
+ *
+ * The algorithms currently supported include:
+ *
+ * - `'RSASSA-PKCS1-v1_5'`
+ * - `'RSA-PSS'`
+ * - `'ECDSA'`
+ * - `'Ed25519'`
+ * - `'Ed448'`
+ * - `'HMAC'`
+ * @since v15.0.0
+ */
+ verify(algorithm: AlgorithmIdentifier | RsaPssParams | EcdsaParams | Ed448Params, key: CryptoKey, signature: BufferSource, data: BufferSource): Promise<boolean>;
+ /**
+ * In cryptography, "wrapping a key" refers to exporting and then encrypting the keying material.
+ * The `subtle.wrapKey()` method exports the keying material into the format identified by `format`,
+ * then encrypts it using the method and parameters specified by `wrapAlgo` and the keying material provided by `wrappingKey`.
+ * It is the equivalent to calling `subtle.exportKey()` using `format` and `key` as the arguments,
+ * then passing the result to the `subtle.encrypt()` method using `wrappingKey` and `wrapAlgo` as inputs.
+ * If successful, the returned promise will be resolved with an `<ArrayBuffer>` containing the encrypted key data.
+ *
+ * The wrapping algorithms currently supported include:
+ *
+ * - `'RSA-OAEP'`
+ * - `'AES-CTR'`
+ * - `'AES-CBC'`
+ * - `'AES-GCM'`
+ * - `'AES-KW'`
+ * @param format Must be one of `'raw'`, `'pkcs8'`, `'spki'`, or `'jwk'`.
+ * @since v15.0.0
+ */
+ wrapKey(format: KeyFormat, key: CryptoKey, wrappingKey: CryptoKey, wrapAlgorithm: AlgorithmIdentifier | RsaOaepParams | AesCtrParams | AesCbcParams | AesGcmParams): Promise<ArrayBuffer>;
+ }
+ }
+}
+declare module 'node:crypto' {
+ export * from 'crypto';
+}